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AN ABSTRACT OF

VIOLATION OF THE SECOND AND THIRD ADIABATIC

INVARIANTS BY HYDROMAGNETIC WAVES

Mechanisms which violate the adiabatic invariants of the

geomagnetically trapped particle motion can produce a marked in-

fluence on the spatial and temporal behavior of the particles. In

this study two acceleration mechanisms are considered: violation

of the second adiabatic invariant by small amplitude hydromagnetic

waves and violation of the third adiabatic invariant by hydro-

magnetic waves of a large spatial scale.

Preliminary to the study, a review is given of the treat-

ment of the motion of a charged particle in an electromagnetic

field by means of the Alfv_n perturbation method, along with a

summary of the current experimental data available on the trapped

particle regime. Larmor frequencies, bounce periods, and drift

periods for a range of energies and L-values are given.

Violation of the second invariant is investigated, using

a simplified model of converging field lines. A restriction im-

posed in a previous, similar study, that the bounce period be less

than the wave period, has been removed in this study. Expressions

for characteristic lifetimes and diffusions have been obtained and

numerical examples are given.

Violation of the third invariant by large scale magnetic

disturbances with a sinusoldal dependence is investigated, using

an image dipole model. Characteristic diffusion times are derived

and the formulation is applied to an example of electrons with

energies greater than 1.6 Mev at L = _. The sinusoldal model is

also compared with the sudden disturbance models of previous

studies.

The results of the studies are used to define measurements

which could be employed to study the specific mechanisms experimen-

tally. The calculations of this study are primarily intended to be

used as tools in the correlation of particle data _:it_ magnetic

field data.
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CHAPTER I

INTRODUCTION

A. Statement of the Problem

Since the discovery of the geomagnetically trapped energetic

particles (Van Allen, et al., 1958), a considerable amount of ex-

perimental data has been acquired on their composition, energy, and

spatial distribution. As the available data have increased, ques-

tions have naturally arisen as to the origin of the particles, their

relation to the cosmic radiation and to the interplanetary medium,

and the acceleration and loss mechanisms which, along with source

mechanisms, determine their energy spectra and their spatial

distribution.

In this study we shall be concerned primarily with accel-

eration and loss mechanisms. A number of such mechanisms have

been proposed, including interaction of the energetic particles

with the background thermal particles through charge exchange and

Coulomb scattering, interaction with electromagnetic radiation,

large-scale convective motions of the thermal plasma and field

lines, and acceleration through interactions with hydromagnetic

disturbances. A number of the mechanisms which have been proposed

require rather special sets of circumstances in order to operate

effectively. We shall consider two types of interactions with

hydromagnetic disturbances which must occur, at least to some ex-

tent, whenever such disturbances are present. These mechanisms

1
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include violation of the second adiabatic invariant by small-

amplitude hydromagnetic waves and violation of the third adia-

batic invariant by small-amplitude magnetic disturbances existing

on a large spatial scale. The first of these mechanisms produces

second order Fermi acceleration, resulting in migration of particle

mirror points down magnetic field lines and eventual loss of par-

ticles into the atmosphere. The principal effect of the second

mechanism is to produce a radial diffusion of particles across

magnetic shells.

We shall begin by briefly reviewing the fu_lamental con-

cepts of the motion of a charged particle in an electromagnetic

field. The experimental data currently available on the trapped

particle regime will be reviewed along with other properties of

the magnetosphere. A suwmary of acceleration mechanisms which

may be operative in the magnetosphere will be given, and the

propagation of hydromagnetic disturbances will be discussed. Pre-

liminary to the main study, the fundamental periods of the

trapped particle motion will be discussed, and a tabulation of

these parameters will be given. The violation of the second and

third invariants will be investigated with an effort being made

to carry out quantitative calculations which will indicate the

characteristics of the disturbances which are necessary for these

mechanisms to be effective. The results of these calculations

will be employed to define measurements which could be used to

study the mechanisms experimentally.

2
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B. Properties of the Magnetosphere

The term "magnetosphere," originally proposed by Gold

(1959), is generally used to refer to that region of space which

is under the direct influence of the earth's magnetic field. In

the past several years a picture of the general shape of this

region has emerged. The shape of the magnetosphere is highly

influenced by the solar wind, a plasma flow issuing from the sun

with a directed velocity of several hundred km/sec and a density

of the order of i0 cm_3 . (Parker, 1960a; 0bayashi, 1964). The

effect of this plasma flow as it impinges on the geomagnetic

field is to confine the field to a rather weE-defined cavity

(Johnson, 1960). Observational evidence indicates that the

boundary of this cavity, during magnetically quiet periods, is

located at about lO earth radii in the vicinity of the earth-sun

line, increasing to larger distances away from local noon (Cahill

and Amazeen, 1963). Detailed theoretical calculations of the

shape of the magnetosphere have been made leading to a fairly

complete picture on the sunward side of the earth (Beard, 1964;

Mead and Beard, 1964). Details of the topology of the nighttime

side are less well known, due both to a lack of observational

data and to theoretical difficulties (Alfven, 1963). Present

models range from those with tails which close at several earth

radii to those with open tails extending as far as 20 to 50

astronomical units (Dessler, 196_). Due to the "supersonic"

nature of the plasma flow, a collisionless shock front apparently

exists, extending 3 or _ earth radii outside the boundary in the

vicinity of the earth-sun line.

The geomagnetically trapped energetic particles located

3
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within the magnetosphere originally were assumed to occupy t_Jo

more or less distinct zones, _Tith the energetic component of the

inner zone being mostly protons and that of the outer zone being

mostly electrons. However, both electrons and protons are found

throughout the trapping region. Typical electron fl_es in the

heart of the outer zone (3.5 to 4 earth radii) are (Frank et al.,

J (E>40 key) = 3 x 107 (cm 2 sec) "I

J (E>230 key) = 3 x 106 (cm 2 sec) -I

J (E>1.6 Mev) = 3 x 105 (cm 2 sec) -I

Directional intensities and spectra of protons from i00 key

to 4.5 Mev have been obtained by Davis et al. (i_2). Peak

intensities of 6 x 107 protons/cm2-sec-ster were found with

energy spectra approximated by e-E/EO with Eo values of 400,

120, and 64 kev at 2.8, 5.0 and 6.1 earth radii respectively

The properties of the inner trapping regions remain

fairly constant with time, while the outer trapping regions un-

dergo considerable temporal variation, much of _ich is correlated

with solar activity.

In order to formulate quantitative theories of the forma-

tion of the radiation belts and their variation with time, a

firm understanding of the mechanisms whereby energy is transferred

from interplanetary space into the magnetosphere is necessary.

At the present time such an understanding is lacking. One group

of such mechanisms might be classified as direct, while a second

class of mechanisms operates in the boundary regions of the mag-

netosphere, and a third class occurs locally within the magneto-

sphere.

4



One mechanism belonging to the direct type is the ener-

getic proton flux resulting from the decay of albedo neutrons

from galactic cosmic ray events (Lenchek and Singer, 1962).

Another mechanism of this type consists of the injection of ener-

getic particles from the interplanetary plasma directly into the

magnetosphere, either by diffusion across the boundary or by the

intrusion of tongues of plasma into the magnetosphere.

The remaining two classes of energy transfer mechanisms

involve the acceleration of low-energy particles already within

the magnetosphere. Various examples of the mechanisms of this

type will be considered below.

Another property of the magnetosphere which may be of

some importance in the acceleration of particles is its apparent

capability of undergoing convective motion. Gold (1959) pointed

out a criterion for stability against convection, analogous to

the adiabatic lapse rate in the lower atmosphere and concluded

that convection could possibly occur in certain regions of the

magnetosphere. Axford and Hines (1961) extended this idea and

proposed a convective model whereby particles could be carried

downward from the boundary.

The existence of hydromagnetic waves propagating in the

earth's field was predicted a number of years ago and has been

confirmed experimentally in recent years. They apparently are

generated at the boundary of the magnetosphere and also possibly

within the magnetosphere (Patel, 1964). These waves may play

an important role in the acceleration and scattering of

particles.



C. Individual Particle Motion and the Guiding Center Approximation

The motion of a particle in an electromagnetic field is

governed by the well-known Lorentz force equation

m_ = e(E+ _lc Xx _) (1.1)

where m is the particle mass, e is the charge on the particle,

v is the particle velocity, c is the speed of light, E is the

electric field strength, andBis the magnetic flux density. When

the electric and magnetic fields vary in space and time, the solu-

tions to (1.1) can be quite complicated. One important property

of the motion can be obtained quite simply, however, by noting

that the magnetic part of the Lorentz force is always perpendicular

to the direction of motion and therefore the magnetic field can

do no work on the particle, so changes in the kinetic energy must

be due to the presence of the E-field. Thus, in the absence of

an electric field, the kinetic energy is a constant of the motion

which implies that the speed of the particle remains constant.

There are two general methods for treating the motion

of a particle in a magnetic field. One method is to attempt to

integrate (1.1) numerically and obtain the trajectory of the

particle in detail. This approach has been discussed extensively

by St_rmer (1955) and is well-suited for particles such as high-

energy cosmic rays which make only a few gyrations in the spatial

volume under consideration. The second method consists of following

the so-called "guiding center" motion of the particle and is

well-suited for describing the motion of low-energyparticles in

the geomagnetic field. Thus, the two methods tend to complement

one another. It is the latter method, developed originally by

6
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Alfven (1963), which we wish to consider.

A review of the guiding center method has been given

by Northrop (196Ba), and we shall follow his development. Let

us first consider the motion of a particle in a uniform field,

in which case the behavior is well-known and consists of a cir-

cular gyration in a plane perpendicular to the field lines with

a superposed constant motion parallel to the field lines. The

gyration frequency is given by

eB
(1.2)

and is called the Larmor frequency of the particle. The radius

of curvature of the trajectory projected onto a plane perpen-

dicular to the lines of force is called the Larmor radius and is

given by p = v± /_L where v± is the component of particle

velocity perpendicular to B. Now if we consider a magnetic field

which is non-uniform, but varies sufficiently slowly so that it

does not change appreciably over distances of the order of p ,

then the lowest order approximation can be taken to be the cir-

cular gyration about the lines of force. The effects of the non-

uniformity of the magnetic field can be introduced as perturbations

and first order corrections to the motion can be introduced by

considering the effects of the perturbations on the motion of

the center of gyration or the "guiding center." Other effects,

such as an electric field and a time variation in the magnetic

field, can be introduced as perturbations also if these effects

are sufficiently small.

Let us consider a particle whose instantaneous position

is r with its guiding center located at R as sho_n in Figure 1.

7



The position vector K can be written in terms of R and the

vector Larmor radius _ in the form

__: R_÷t (z.3)

The unit vector_l lies along B with _2 and % in a plane per-

pendicular to B completing an orthogonal triade. The vector

Larmor radius can be written

= p (% sin _[_t +_3 cosbJ L t) (l._)

This just represents the circular motion about the guiding center.

The E- and B- fields in (1.1) are functions of r in

general, so we should write

_':w r) +_ x _(r (1.5)

If E and B do not change appreciably over distances of the order

of p , we can replace ECr) and B(r) by E(R) and B(R) plus grad-

ient corrections such that (1.5) becomes

=_T . __(R_)+ (__x_ )f- v +_-E_C_R)(1.6)

We can use (1.3) to eliminate r from (1.6), obtaining

_e2 A _t)'_ = pu2_( sin _ht + e 3 cos

e _ B(R)+ _ B(_R)+ m--c- x x

e

+-- _E(R_)
m

(1.7)

where use has been made of (i._). Taking the time average of

(1.7) over one Larmor period gives

8
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- m_ x B(R) - T_7£ +- E(R)
m _

(1.8)

where __B is the component of V 8 perpendicular to B and

m_2(_ 2 / 2B is the diamagnetic moment of the particle as

it gyrates in the magnetic field. This quantity will be dis-

cussed at greater length in the following section.

To obtain the drift velocity perpendicular to B, we take

the cross product of both sides of (1.8) with B(R).

_ denote the perpendicular drift velocity we have

Letting

c B xXT_B + cE x B+---- - - - (1.9)
e Bz B 2

The last term is just the familiar "E x Bdrift" and the second

term is the so-called "gradient drift." The first term contains

several different drift effects and must be considered further.

Writing R in terms of its components parallel and perpendicular

to B and expanding the first term gives, after some algebraic

manipulation,

_ { _c mc [U_!_ ,
B -cE+

e e _s

• _ a_
+ _ i,,,I _ + -K

+u_ . __£
+ _'[I _s --

(1.1o)

where_is the component of particle velocity parallel to B,

- c E x B_B 2 and s is the distance along the field line.U

If the E-field and time variations in B are sufficiently small,

the last five terms in (i.i0) can be neglected, resulting in

1--± = B--_ x c E +--_B +-- I- e e 3s

9
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This is the form frequently found in the literature. The terms

in (1.11) have simple physical interpretations. The gradient

drift term arises when we have a situation similar to that

shown in the diagram below. The B-field is directed

Field

Strong Field
Drift

out of the page. As the particle spirals about a line of

force, the instantaneous Larmor radius will be large in the

weak part of the field and small in the strong part, so the

particle executes a motion like that shown in the diagram, which

constitutes a drift of the guiding center in a direction perpen-

dicular to both B and _B. The direction of the drift shown in

the diagram is for a positively charged particle. A negatively

charged particle would drift in the opposite direction. The

last term in (1.11) is the "llne curvature drift." This drift

is the result of an inertial force set up as the guiding center

moves along a curved field line as shown in the diagram below.

R is the instantaneous radius of curvature of the field line.

Inertial Force

2
The inertial force m_,, /R acts in a direction normal to the

field llne in the direction of the unit vectorS. The particle

would experience the same force if the field line were straight

lO



and an effective electric field were introduced with a strength

given by

_..2
E elf
-- eR

This effective E-field would produce an E x B drift

E eff x B mc _ B

- - -- x (1.13)--I_/-E= C B2 - e R "_"

/k
Since n / R = _, /_ s, this is just the line curvature drift

term of (1.11).

The equation of motion of the guiding center parallel

to the line of force can be obtained by taking the scalar pro-

duct of both sides of (1.8) with/_ • This results in
J

d_r_ _ e E ._ 8B +_ d_,

dt m ,! m S s E dt

(1.14)

The second term on the right-hand side of (I.14) is the so-

called mirror term. To see the significance of this term, let

us consider the case when the electric field vanishes and _B/S s

is a constant. It will be shown in the following section thaty

is an approximate constant of the motion. Using this fact, a

first integral of (1.14) can be obtained in the form

8B
_- (t) _p- t (1.15)

II - = v°#I _ s

where vo is the particle velocity at time t = O. Thus, as
;I

the particle moves into a region of increasing field strength,

its guiding center will stop and reverse its direction. The

ll



particle is in effect reflected. A magnetic field configuration

with converging field lines is referred to as a "magnetic mir-

ror." Equations (1.11) and (1.14) provide a complete description

of the guiding center motion of the particle.

D. The Adiabatic Invariants

The main features of the motion of charged particles

in non-uniform magnetic fields can generally be well described

in terms of the so-called adiabatic invariants. These are para-

meters of the motion which generally remain constant even when

the field seen by the particle is slowly varying. The concept

of adiabatic invariants was first used in the perturbation

theory of celestial mechanics, and it was later employed in the

"old" quantum theory, where the quantized quantities were the

action integrals which are adiabatic invariants.

In general the number of adiabatic invariants associated

with a mechanical system is less than or equal to the number of

degrees of freedom of the system. In particular, the motion of

a particle in a dipole-like field such as the unperturbed field

of the earth will have three adiabatic invariants associated

with it. We shall now consider each invariant separately.

1. First Invariant or Magnetic Moment. It can be

shown that the magnetic moment %_of the current loop due to

the motion of the particle in its Larmor orbit is an invariant

of the long-term motion even when we have a general time-

dependent Bofield and (in the non-relativistlc limit) when large

E-fields are present. The proof for the general case is quite

lengthy (Northrop, 1963b), but it is rather simple for the

12



special case of static B-£ields. The latter proof will be out-

lined below, following Northrop (1963a).

For the case of static B-fields, we know Vx E = 0

from Faraday's law, and E can be written as the gradient of a

scalar potential _. Since the magnetic field does no work on

the particle, we can write the total energy of the particle .

in the form

where the term in parentheses is the energy of the guiding

center motion, and_B is the energy of the particle in its

Larmor orbit. In the case being considered, W is conserved,

so we can write dW/dt = O. Differentiating (1.16), equating

the resulting expression to zero, and using the guiding center

approximation (1.14) for dE,/dt gives

d (ZJB) - e d_ - mu ° duE - mv {e

/

dt d7 --E -_ ,l <m El!

_- tlds + l

Now we can write

m ds dt!

=0

(1.18)

Using (1.18) and the guiding center approximation (i.ii) for

in (1.17) gives
--4

dt " %/v;{ = -dt
(1.19)

Therefore

=0
dt

13
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The magnetic moment can be written in several other

useful forms

m2 2e me2( p2B (121

The quantity --'1#p2B is the magnetic flux threading through the

Larmor orbit, so this quantity is also an invariant of the motion.

Hence, the particle can be visualized as moving on the surface of

a tube of constant flux. It should be kept in mind that the per-

pendicular velocity vl must be with reference to a frame moving

with the guiding center.

The first invariant still holds in the relativistic case

provided P1 and B are taken to be the momentum and field as

observed in a frame moving with velocity _E"

2. Second or Longitudinal Invariant. In the sense that

the first invariant is associated with the Larmor gyration of the

particle, the second invariant is associated with the oscillation

of the guiding center of the particle back and forth between

mirror points when such a field geometry exists. This parameter

can be written

J = _p,, ds (1.22)

J

where Ptl is mvll , s is the distance along a line of force, and

the integral is taken over a complete oscillation. In order for

J to be conserved, it is necessary for the guiding center drift

o

velocity R& to be small compared to v_, so that the particle

stays on essentially the same line during one "bounce" period.

In general it can be shown that J is invariant, even for rela-

tivistic energies and time-varying fields, provided the period

of variation is much greater than the bounce period (Northrop and

14



Teller, 1960). Actually, it is the value of dJ/dt averaged over

one bounce period which vanishes and not its instantaneous value.

3. Third or Flux Invariant. When a particle for which

J is conserved is subjected to a drift, it will move across lines

of force on which J is constant. These lines will form a surface,

the so-called longitudinal invariant surface. When this surface

closed, a third invariant exists. It is the magnetic flux_is

linking the longitudinal invariant surface. It is obvious that

is constant for the case of static fields, since the particle

will precess repeatedly around the same surface and the surface

will not change with time. If the B-field has a time dependence

which is slow compared to the time it takes the particle to

precess once around the surface, _is still conserved (Northrop,

l 3b).

A convenient means of describing the motion of a low-

energTparticle in the geomagnetic field is provided by the

adiabatic invarlants. When all three invarlants are conserved,

the particle will precess in a Larmor circle about its guiding

center while the the guiding center will oscillate back and

forth in latitude between mlrror points, at the same time pre-

cessing around in longitude until it eventually makes a complete

circuit and returns to the same line of force from which it

started. If the third invariant does not hold, then the guiding

center will not necessarily return to the same line after drift-

ing around even though the particle continues to oscillate be-

tween mirror points. If the second invariant breaks down, the

particle may still continue to be reflected from mirror points,

but the mirror points themselves may change. If the first invar-

iant breaks down, the particle may no longer be reflected.

15



In the case of motion in the geomagnetic field, the

drift period will be the longest of the three, while the Larmor

period will be the shortest. Thus, if we introduce a time-

dependent perturbation and gradually increase the frequency of

the perturbation, the third invariant would be expected to break

down when the frequency of the perturbation is of the same order

as the drift frequency. The second invariant will break down

when the perturbation frequency reaches the vicinity of the

bounce frequency. Finally, the first invariant will be violated

when the perturbation frequency is approximately equal to the

Larmor frequency.

The adiabatic invariants as we have defined them above

are really the lowest order terms in an asymptotic series.

Systematic formal analysis shows that the conserved quantities

should be written (Northrop, 1963b)

+_a +E2a2 + ...const = a° i

where 6 is some smallness parameter and a is the quantity
o

usually referred to as "the" invariant. It should be noted

that it would be possible for an invariant to be conserved to

the first order but be violated at the higher orders.

E. Mechanisms for Scattering and Accelerating Trapped Particles

In this section we shall consider some of the mechanisms

whereby the geomagnetically trapped radiation may undergo accel-

eration or scattering. In order for an irreversible acceleration

of trapped particles to occur, it is necessary that one or more

of the adiabatic invariants of the motion be violated. We shall

16



briefly review some of the investigations that have been

made on the effects of the breakdown of the adiabatic invariants

by various mechanisms.

The rate of change of the total kinetic energy of a

particle, averaged over a gyration and assuming_4 is conserved,

dW = eE (R,t) . _ +/___B (R,t) (1.23)
dt - -- - Dt --

can be written

where R is the total guiding center drift velocity _i 1_I' +
-- ±

The first term represents the change in energy due to guiding

center motion in the E-field. The second term is the induction
m

term leading to "betatron" acceleration, due to the E-field with

non-vanishing curl acting about the circle of gyration. The

reason the second term contains a partial time derivative rather

than the total derivative

dt _ t _s

is that magnetic field gradients do not change the total energy,

but merely interchange energy between the parallel and perpen-

dicular components as in the mirror effect (Northrop, 1963b).

If the magnetic field can be uniformly increased at a rate suf-

ficiently slow to conserve/z_, then a trapped particle can receive

a net energy gain.

Coleman (1961) has examined the betatron effect for rela-

tivistic particles and finds that for an isotropic flux with an

energy spectrum N(_E) = E _, the value of _will increase slightly

with increasing B and decrease slightly with decreasing B.

17



A possible means of producing betatron acceleration is

provided by the convective model of Axford and Hines (1961).

Particles could be carried downward from the boundary of the

magnetosphere and undergo acceleration as they pass into regions

of higher field strength (Kaufmann, 1963). Dessler and Karplus

(1961) have suggested that changing field strength accompanying

the formation of a ring current could also produce betatron accel-

eration. The so-called Fermi mechanism was originally suggested

by Fermi (1949) in an effort to explain the acceleration of high

energy cosmic ray particles in interstellar space. The principle

of the method is acceleration of a particle by means of collisions

with a moving mirror point in analogy with a ball being struck

with a bat. In a frame of reference in which the magnetic field

is static, there will appear to be no energy change when the

particle is reflected, but to an observer in a "fixed" frame

there may be an energy change. The energy change will be simply

2mU(v-U) if v is the final velocity of the particle in the fixed

frame and U is the velocity of the moving frame relative to the

fixed frame.

Starting with the rate of change of the energy of the

particle as viewed in the fixed frame written in the form

dW

dt e_l --II A at

and expressing the quantities in terms of the velocity of the

moving frame U, it can be shown that (Northrop, 1963b)

dW =/._U _)__B.B+ m(v,,-U,,) U-----
dr II &s -I _)s

(1.26)
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It is possible to distinguish between two different types of

Fermi acceleration. In the so-called "type a" accelerations,

the guiding center moves along a straight llne of force, and the

second term in (1.26), which involves the llne curvature, van-

ishes. If the particle guiding center moves along a curved line

of force, but with the field strength constant along the line,

then the first term wlll be zero, and this is "type b" acceleration.

In going from (1.25) to (1.26) the_ (_b_Bt ) term goes
into

forming the - IXUI, (_B) term. Hence, betatron acceleration is
_s

really a part of Fermi "type a" acceleration.

Moving plasma clouds in the boundary region could pro-

duce Fermi acceleration, which would be inefficient for electrons

but could be effective for protons. Thls process has been de-

scribed by Parker (1958). The alternate raising and lowering of

mirror points discussed above in connection with the breakdown of

the second invariant can be viewed as a Fermi acceleration, since

the particles will be reflected from moving mirror points.

The first detailed investigation of the breakdown of the

third Invarlant appears to have been that of Parker (1960). In

thls study he considered only those particles with pitch angles

o
of 90 In the geomagnetic equatorial plane. Particles of this

type located at a given radial distance will simply &rift around

the earth on a contour of constant field strength, remainin_ in

the equatorial plane. The unperturbed field was assumed to be

that of a dipole. A geomagnetic storm-type of disturbance was

simulated mathematically by considering the effects of a plane

of infinite conductivity brought in from infinity. Such a per-

turbation will cause the field to be compressed on the side toward
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the plane. If we consider a ring of particles around the earth

at a given radius before the perturbation, this ring will be dis-

placed with the field lines if the perturbation occurs slowly

enough so that the first and second invariants are conserved.

Each particle will try to precess along contours of the field

strength in which it now finds itself. Since for a given radius

on the side toward the plane the field strength will now be

stronger, the contours of constant field strength are displaced

toward the plane. Thus, the particles initially in a ring will be

diffused into a band. By using this model, Parker was able to

set up and solve a diffusion equation showing the behavior of

particles subjected to a series of such perturbations.

A study similar to that of Parker was carried out by

Davis and Chang (1962), using the same model but with a different

diffusion equation. The results were similar, except that the

density of particles at smaller radii was found to be somewhat

greater. The Davis and Chang model has recently been applied to

disturbances of the sudden-impulse type by Nakada and Mead (1965).

These studies will be considered in greater detail in Chapter VI.

The effects of the violation of the second invariant by

hydromagnetic waves have been investigated theoretically by

Parker (1961a). He considers the behavior of particle motion

when hm waves pass across the mirror points. The mirror points

will be ascending during the part of the wave in which B is in-

creasing and descending when B is decreasing. Thus, the particle

will be reflected from moving mirror points and Fermi acceleration

is possible. (The mechanism will be discussed in more detail below).

By integrating the guiding center equation (1.14) for
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motion parallel to the line with simplified wave models, Parker

was able to study the effects that hm waves have on the particle

distributions along the lines. From this study he concluded that,

for hmdisturbances extending throughout the magnetosphere, the

net effect is a diffusion of particles downthe lines of force

and loss into the atmosphere. In this study certain restrictions

were imposed on the particle energies which could be treated in

the presence of waves of a given frequency. Oneof our objectives

in the study presented in Chapter III is to remove these restrictions.

The effects of both hydromagnetic disturbances and

electromagnetic radiation on the first invariant have been in-

vestigated by a numberof authors. In order to be effective in

breaking downthe first invariant, a perturbation must have a time

scale of the sameorder as the Larmor period of the particle.

Studies of the effects of small transverse perturbations

to an otherwise uniform field have been madeby Wentzel (1961a;

1961b; 1962) and Parker (1964). In both cases it was found that

the amount of scattering introduced is quite sensitive to the

numberof reverse bends in the disturbance traversed by the parti-

cle during one Larmor period. Since the maximumfrequency of hm

waves which will propagate is equal to the local ion cyclotron

frequency, we would not expect hmwaves to be effective in breaking

down the first invariant in the electron belt. However, there

is a chance for someeffect in the proton belt, especially for

the case of waves which maybe "Doppler shifted" up to the proton

Larmor frequency by the motion of the proton toward oncomingwaves.

This possibility has been investigated by Dragt (1961) by intro-

ducing hmwaves as perturbation to a dipole field. He finds that this
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may be an effective mechanism in causing energetic protons at

distances greater than two earth radii to diffuse down the field

lines into the atmosphere.

The effectiveness in breaking down the first invariant by

electromagnetic waves in the whistler range propagating in the

magnetosphere has been considered by several authors. Helliwell

and Bell (1960) have suggested acceleration of electrons by

whistlers with the generally descending frequency of the whistlers

keeping in step with the electron gyration frequency which will

be decreasing as the relativistic mass increases. The method has

been re-examined by Parker (1961b), who concludes that the method

is inefficient unless the whistler field amplitudes are greater

-2
than I0 volt/meter. He has extended the study to include

transresonant acceleration, in which the whistler frequency sweeps

through the electron gyration frequency, and he finds that elec-

tron velocities may be scattered by this mechanism. Similar in-

vestigations have been carried out by Dungey (1963) and Cornwall

A mechanism has been described by Dungey (1958) whereby

a neutral line (of zero B field) is set up between two points

in the presence of an electric field. A discharge could then

take place, resulting in particle acceleration. The first invar-

iant will not be conserved in the vicinity of a neutral point or

a neutral line, so scattering can occur.
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o CHAPTER II

FUNDAMENAL PERIODS OF THE TRAPPED PARTICLE MOTION

Since violation of an adiabatic invariant can occur when

perturbations exist with periods comparable to the period of motion

associated with the invariant, it is useful to begin the study by

making a tabulation of the fundamental periods of the motion. In

particular, we are interested in the three fundamental periods of

both trapped electrons and protons over a wide energy range and for

L-values out to L=IO.

A. Larmor Frequenc_

The Larmor frequency _)of a charged particle spiraling

about a line of force is easily calculated, using the relation

= 1 eB (2.1)

where _ is the relativistic mass ratio (i c2 J Since B changes

as the guiding center of the particle moves along a line of force,

changes, having a maximum value at the mirror points and a minimum

value at the equatorial plane. For the purpose of this and the fol-

lowing calculations, we shall assume as a magnetic field model an

earth-centered dipole with a field strength of 0.312 gauss at the

surface of the earth at the magnetic equator.

Values of _at the equatorial plane are given for electrons

and protons in Table I. Assuming conservation of the first invariant,

at the mirror points can be obtained by dividing the values given

in Table I by sin2_where -_ is the equatorial pitch angle of the

particle. For example, a particle with a oitch angle of thirty

degrees will have a value of _ at the mirror points four times the

value at the equator. The decrease in the Larmor frequencies of
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electrons at the high energy end is due to the increase in relativistic

mass.

The Larmor frequencies of electrons in the energy range of

interest are found to be of the order of from one kilocycle per

second to several tens to kilocycles per second, which is well out-

side the frequency range for hydromagnetic disturbances. Thus, it

appears that violation of the first invariant of electrons would re-

quire perturbations of other types which are outside the scope of

this study. Effects of these types have been investigated by Parker

(1961), Dungey (1963), and Cornwall (1964).

The Larmor frequencies of the protons of interest are of

the order of one cycle per second to several tens of cycles per second.

Since hydromagnetic waves propagate at frequencies less than the

ion Larmor frequency, the possibility of violating the first in-

variant of protons with hydromagnetic disturbances does not seem to

be good. Under conditions in which the wave crest and proton guiding

center are moving along a line of force toward one another, it may

be possible for the wave frequency to be Doppler shifted up to the

proton Larmor frequency as viewed in a reference frame moving with

the guiding center. This possibility has been investigated by

Wentzel (1961a; 1961b; 1962), Dragt (1961), and Parker (1964).

B. Bounce period

The bounce period Tm is defined as the length of time re-

quired for a trapped particle to travel from one mirror point to

another and back again. Using this definition and assuming symmetry

about the equatorial plane, we can write

1

Tm = 4_ ds d_ (2.2)
do v.(e)

m
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where O m is the co-latitude of the mirror points, s is arc

length measured along a line of force, and vI! is the particle velo-

city component parallel to the field line.

model the element of arc length is

ds = REL sin _9(I+3 cos

For our dipole field

2e )½de (2.3)

where R E is the radius of the earth and L is the distance in units

of earth radii from the center of the earth to the field line in the

geomagnetic equatorial plane. The dimensionless length L is equiva-

lent to McIlwain's magnetic shell parameter for this model. Sub-

stitution of (2.3) into (2.2) gives

Tm= 4 RE L T(_ )

v (2.2)

where

T(#_)----17in_ (_+3cos2 e)_

e (_) sinbo '
m

-i de (2.5)
2

with_-- sinot. This integral has been evaluated numerically by

Hamlin (1961), who has shown that it can be approximated quite well

by

T(#_) _ 1.3o- o.56# (2.6)

Values of Tm for both protons and electrons are given in

Table II, where an equatorial pitch angle of 30 ° has been assumed.

Since T(_) changes by less than a factor of two over the entire

range of pitch angles from zero to ninety degrees, the change in Tm

over the same range is also less than a factor of two. If desired,

the values of Tm for any pitch angle of_,_can be obtained by multi-

plying the values given in Table II by the factor (1.27 - 0.55 sin_ ).
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Examination of Table II indicates that the bounce periods

of electrons with energies greater than a kilovolt are less than l0

seconds. In particular, the bounce periods of electrons with energies

of the order of a hundred kilovolts or greater are mostly less than

one second. The situation for protons is somewhat different. Bounce

periods for protons in an energy range from a few tens of kilovolts

to lO Mev range from the order of a minute down to about one second.

These calculations are presented graphically in Figure 2

(protons) and Figure 3 (electrons). The graphs allow estimates of

the energies of the particles whose second invariants may be violated

by a perturbation with a given period at a given L-value.

C. Drift Periods

The drift period of a trapped particle can be calculated

by considering the instantaneous drift velocity of the guiding cen-

ter as it moves in longitude, which can be written

(v,,2 + 1/2 ) (2.7)

where R is the local radius of curvature of the field line. In this

expression only the field gradient and curvature drifts have been

considered, which should be adequate for our purpose. Assuming sym-

metry about the equatorial plane, the change in the guiding-center

longitude _ during one bounce period is

av=4
Je dA vp(S) dede v,,(e)_(e ) sin@

m

Using the dipole field model, the average drift frequency is found

to be

z_ _ 3_mc3 _2 _(_)

% e_ RE2L 2 T(_)
eq
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where Be_ is the field strength in the equatorial plane and

- v . The function E(%z) is given by

E(_) = / sin3 _ (l+cos 2 8 )

(1+3cosa_ )½
sln6e -

(1+3oo 2e
sln6

This integral has also been evaluated by Hamlin (1961) who finds

that a good approximation is

E(_) N O.35 + O.15_

The drift period is obtained using T d = 2_K/_CA. Values of Td

calculated from (2.9) and (2.11) are given in Table IIl. An

equatorial pitch angle of 30° was assumed in all cases. I)rift

periods for particles of arbitrary equatorial pitch angle o_ can

be obtained by multiplying the values given in Table III by the

factor (0.82 + 0.35 sin @S-).

It is of interest to note that the drift decreases as

L "I. The drift periods for protons and electrons are approximately

equal except at the higher energies where the change in relativistic

mass ratio becomes significant for the electrons. In order to vio-

late the third invariant of particles with energies greater than

I00 kev, it appears that perturbations with a time scale from one

to several tens of minutes are required. The calculations are pre-

sented in a graphical form in Figure 4.

D. Su"_mr F

Since hydromagnetic waves propagate at frequencies less

than the local ion Larmor frequency, we would not expect to find

hydromagnetic waves in the magnetosphere with frequencies higher

(2.n)
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than the Larmor frequencies for protons given in Table I. The

electron Larmor frequencies are all considerably higher than the

proton Larmor frequencies, so we would not expect violation of

the first invariant of electrons by hydroma_etic waves. It may be

possible for hydromagnetic waves propagaKing with frequencies near

the local ion Larmor frequency to violate the first invariant

of protons. If the wave and guiding center of the proton are moving

toward one smother, the wave will appear "Doppler shifted" to a

higher frequency in the rest frame of the particle.

Reference to Table II indicates that hydrcmagnetic waves

could violate the second invariant of both electrons and protons

over essentially the entire range of energies and of L-values,

except perhaps electrons at the highest energies considered at

large L-values. Hydroma_etic waves with periods from about one

second up to several tens of minutes should be effective in vio-

lating the second invariant of protons, while wave periods in the

range from ---.05 second to I0 minutes should be capable of violating

the second invariant of electmOms.

The drift periods tabulated in Table III indicate that

violation of the third invarismt of both electrons and protons with

energies greater than a few key requires bydromagnetic waves with

periods ranging from one minute to several hours.
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CHAPTER III

VIOLATION OFT HE SECOND INVARIANT

BY SMALL-AMPLITUDE WAVES

A. Introduction

There exist a number of mechanisms which can produce violation

of the second invariant, including the passage of compressional and

transverse hydromagnetlc waves across the mirror-point regions, the

drift ofmirror points into regions of rapidly changing field strength,

and large-scale disturbances with rise times comparable to the particle

bounce period. We shall now attempt to investigate quantitatively

the effects produced in the particle motion when the second invarlant

is violated by small-amplitude magnetic disturbance. The passage of

a wave across the mirror-point region of a particle causes a change

in the total field strength, which in turn causes the mirror point to

move along the field llne. Since the particle will be reflected from

a moving mirror point, Fermi acceleration can result. If a harmonic

train of disturbances is present, the particle will make both headon

and overtaking collisions with the mirror point, so that accelerations

and decelerations of the particle will tend to cancel to first order,

provided the waves are of sufficiently small amplitude. However, as

we shall see in the following sections, a non-canceling second-order

acceleration remains whenever the wave period and the particle per-

iods are such that the second Invariant is violated.

Before proceeding further, we need to establish a criterion

for classifying a disturbance as "small amplitude". Let us consider

a plot of field strength versus distance as we move along a field

line as shown schematically in Figure 5. If the disturbance moves

down the field line (toward increasing s), then particles with initial
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mirror points such as that shown in the diagram can become trapped

between the moving wave and a stationary mirror point and can under-

go first-order Fermi acceleration which will continue until the

particle develops enough energy to penetrate the wave. We see that

first-order effects can occur only so long as the wave shows a pro-

nounced peak on a B-versus-s plot. Kaufmann (1963) has pointed out

that such peaks will cease to exist when (dB/dS)wave'_dBo/dS where

Bo is the unperturbed field strength.

The quantity (dB/dS)wav e can be estimated, using

, -mB (3.1)
ds wave IrVA

where AB is the amplitude of the wave, tr is the rise time, and VA

is the Alfv_n velocity. The derivative of the unperturbed field can

be calculated, assuming the centered dipole field model used in

Chapter II and using the expression (2.3) for the element of arc

length ds, to obtain

dB___o= 3.12 x 10 -6 cose(3 + 5 cos2e ) (g ma/
ds L4 sin8 e (i + 3 cosZO ) earth radius) (3.2)

> dBAssuming that the condition_[ 6- wave _ must be satisfied in order

for first-order acceleration to occur, we can estimate the maximum

mirror-point latitude A m( =-2-'_m) which a particle can have and

still undergo first-order acceleration in the presence of a wave with

a given amplitude and rise time. For a lO-gamma disturbance at L= I0,

J

with a rise time of lO seconds, assuming an Alfven velocity of

500 km/sec, we find (dB/dS)wave'_l 3 gamma/earth radius. From (3.2)

the latitude at which (dB/dS)wave-vdBo/ds is found to be,_20 °. It

is of interest to relate the mirror-point latitude to the equatorial
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pitch angle of the particle. This can be done by assuming conserva-

tion of the first invariant which gives, for a dipole field

Beq cos 6 _ m
sin 2 %--: (I + 3 sln2Am)_ (3.3)

where Beq is the field strength at the equator and Bm is the field

strength at the mirror point. A plot of A m versus _(_ is given in

Figure 6. The pitch angle corresponding to a mirror-polnt latitude

of Am = 200 is =X_= 40 ° . THUS, in order for a particle to undergo

first-order acceleration in the example considered above, it would

have to have a pitch angle greater than 40 °. At lower L-values the

minimum pitch angle would increase. Hence, for disturbances with

small amplitudes of the order of I0 gammas, we would expect first

order acceleration to be confined to particles mirroring near the

equatorial plane, with the effect being greatest at high L-values.

B. The Model

After having familiarized ourselves with some of the essen-

tial features of the problem, we would now like to proceed with a

more quantitative investigation. However, before this can be done,

a model must be chosen which will provide an adequate representation

of the actual physical situation. Any attempt to use a dipole field

as the unperturbed field results in equations of gulding-center

motion which are not tractable, at least analytically. As a result

it seems desirable to find a model of the unperturbed field which

yields a less complicated guiding center equation, but which still

preserves the essential features of a dipole-like field.

In an earlier study, Parker (1961) used an unperturbed field

model of the form

= Beq(1+_s )
8
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where Beq is the field strength at s = 0 (equatorial plane) and a

is the characteristic length over which Bo varies. This model can

be regarded as the first two terms in an expansion of the field or,

somewhat more physically, it can be regarded as the field resulting

from a dipole flux tube which has been bent out into a straight line.

To complete the model, Parker chose to represent the hydrc_agnetic

perturbation by a sinusoidal variation in the field strength, giving

a total field of the form

B(s,t) = Beq(l +_-) + _ sin (_Vt-_) (3.5)

where _= LkB/B o and $ is a phase factor used to relate the phase

of the wave to the initial conditions of the particle motion.

The model should provide a reasonable representation of any

mechanism which produces an approximate sinusoidal variation in the

total field strength. In particular, the model probably best re-

presents the propagation of compressional waves across field lines.

Since this model seems to preserve the essential features of the

physical situation and yields a tractable guiding center equation

of motion, we shall adopt it also. In Parker's original analysis a

restriction was imposed, such that only those particle energies and

wave frequencies could be treated for which the condition _Tm< 1

was satisfied. We shall attempt to remove this restriction since, In

general, there will be a considerable range of energies over which

a wave of a given frequency will produce a significant effect, and

we would llke to be able to estimate this range. Alternatively,

there will be a band of wave frequencies which will produce an ap-

preciable effect on particles of a given energy.
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c. Calculationof <a > and<(n )2>

The principal effect of the perturbation in the model which

we have chosen is to produce a random walk of the particle mirror

points down the field as the second order Fermi acceleration transfers

energy from the perturbation into the parallel component of the

particle motion. Thus, we have essentially two effects occurring;

due to the migration of the particle mirror points down the field

lines, the particles will eventually become lost into the atmosphere,

but of those remaining in the trapping region at any given time, some

will show an increase in energy.

In order to treat the problem quantitatively, the fundamental

quantities to be calculated are the mean and mean square change per

bounce period in the parallel component of particle velocity _j .

To do this, we consider the motion of an individual particle starting

with the guiding center equation, which in the absence of an electric

field can be written

m d2s =- %,13 B (3.6)
dt 2 _--_--

The use of this equation implies assumption of the conservation of

the first invariant. Substitution of the field model (3.5) into

(3.6) yields an equation of motion of the form

d2s _ fro2 _+ _sin (uzt- _)I
dt 2 2a

(3.7)

where we have used the relation for the diamagnetic moment/_ = ..m_-t

2Beq

with %%being defined as the velocity of the particle at s = O,

at tima t = 0.

The first integral of (3.7) gives the parallel component of

2

the particle velocity
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vj, = Vo. 2a 2aa_ _J(3.8)

and the second integral gives the position of the guiding center

as a function of time

s = vo,lt - Vo2 t 2 Vo_rg rsin (&ut - $) - tot

4a + L2a_

From these relations we would like to calculate the change in the

particle's parallel velocity component when it returns to s = 0

after one bounce period. To do this, we must first calculate the

time required for the particle to go from the origin to the mirror

point and back to the origin again from (3-9) by letting s = O and

solving for t. This value of t is then substituted into (3.7) to

obtain the value of vjt when the particle returns to the origin.

Some practical difficulties are encountered in finding the

roots of (3.9) with s set equal to zero, since it is transcendental

to t. In order to solve this equation in Parker's analysis, an

expansion of t in powers of 6uwas adopted, i.e.,

00

cos_ + sin_

(3.9)

t = _. fn_n (3.10)

In order for this expansion to converge, it is necessary that

60 t < I, which imposes the previously mentioned restriction. This'

can be avoided if we choose _ as an expansion parameter,restriction

and write

_t = a o + alg + a2_2 + .... (3.11)

Substitution of (3.11) into (3.9) with s set equal to zero yields

an expression in ascending powers of 6 . By setting the coef-

ficient to each power of 6 separately equal to zero, we obtain a

set of equations which can be solved for the coefficients ao, al,
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a2, etc. In practice the calculations are carried out through

order _ 2.

After finding the coefficients in (3.11), the resulting

expression is substituted into (3.8) to give the change in the paral-

lel velocity component during one bounce period Z[_ I. We now assume

that all values of the phase _ of the wave relative to the initial

condition of the particle are equally probable. This allows us to

calculate the mean and mean square changes in #o

i if 2_7 Jf

<A_,,> =___m 2 A oU-0d

defined as

(3.12)

and

21"f

(n%. )2d_ (3.13)

These and the preceding calculations require a large amount of

straight-forward algebra, the details of which are given in Appen-

dix A. The results of these calculations are

<n_,> -
w'- 2F-"2 I-
ol sin _T m +

2a 6UTm

4 sin DUTm 4(l-cos6OTm)

and

<(n_,)2>=

(i-3 cos_T m)

(_Tm) 2

+ 6)(6 3)

U-'ojE2 i(l+cos_Tm ) 4 sino)Tm4a,2 _ _Tm (eTm)2

+ 4(1-cos_,Tm ) + @ (C 3)
(OJTm)3

(3.14)

(3.1_)

If we expand (3.14) and (3.15) in powers of&uT m and retain the lowest

order non-vanishing term in each case, we obtain
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2 2

<Av> 2a 72
(3.16)

and

(3.17)

These expressions are equivalent to the results obtained by Parker.

Thus, our solution reduces to Parker's solution in the limit of

small _T m as it should. Figures 7 and 8 show the behavior of </k _>

and < (/kU,)2 > , along with approximations (3.16) and (3.17).

The minima in _ktrj)2_ and the zeroes in< _ _can be

attributed to the existence of a perturbation along the entire

length of the trajectory in the model which we are using. As a

result, a particle can encounter perturbing accelerations which can

tend to accelerate the particle along some parts of its trajectory

and decelerate it along other parts. Because of this, cancellation

can occur for certain ratios of the bounce period to the wave period.

Cancellation can occur in two ways: the accelerations along the

trajectory can cancel independent of the phase angle _ , or the

changes produced in Zi_ can be completely symmetrical in _ so
Jl

that when the averaging over phase is carried out, cancellation oc-

curs. The former accounts for the minima in < (A t_aj)2> and the

zeroes near 311", 5 T[, etc. in </% _>,while the latter accounts for

the zeroes in<Z_near 217", _9-[ , etc.

The mean and mean square changes in the parallel component

of velocity per bounce period provide good quantitative measures of

the effectiveness of a disturbance of given frequency and amplitude

in modifying particle motion. Examination of the < (_,t_nlO__)2> vs.
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_jTm curve indicates that the second invariant in this model is

conserved only at certain discrete values of the ratio of the

wave period to the particle bounce period. The maximum effect

occurs when the wave and particle periods are of the same order,

quantitatively confirming the usual statement, that for appreciable

violation of the second invariant to occur, disturbances must be

present with time scales comparable to the bounce period. The

envelope of the curve falls off like (a_m)'l for large _Tm, as the

large number of reversals of the perturbing acceleration during a

bounce period tend to cancel more efficiently.

D. Mean Lifetimes and Diffusion Times

We would now llke to use the expression for <_a > and

_,)2 > derived in the previous section to calculate< (m para-

meters which can be used in describing the physical behavior of a

system of trapped particles in the presence of magnetic disturbances.

It was pointed out earlier that as long as the first invariant is

conserved, the component of particle motion transverse to the field

line cannot undergo an irreversible acceleration. Hence, there can

be no net change in _-o!, the perpendicular component of particle

velocity at the equator. Therefore, energy transferred from the

wave to the particle motion will appear as an increase in the kinetic

energy associated with the motion of the particle along the field

line, i.e., _o will change. When _o increases while _-e
e| is

remains constant on the average, the equatorial pitch angle of the

particle must decrease. As the pitch angle decreases, the particle's

mirror point moves down the line of force. If the disturbance extends

down to the atmosphere and persists over a sufficient period of time,



the mirror point will move into the dense atmosphere, and the

particle will be removed from the trapping region through collisions

with the air molecules.

Since evidence now exists that at least some hydromagnetic

disturbances propagate from satellite altitudes to ground level

(Patel, 1964), loss of trapped particles to the atmosphere can be

expected to occur when such disturbances are present. It is of in-

terest to calculate the change in energy which a particle can undergo

before entering the atmosphere. If_._ o is the initial equatorial

pitch angle of the particle and_ c is the minimum equatorial pitch

angle which a particle can have before entering the atmosphere, it

follows directly from the conservation of the first invariant that

the particle energy will be increased by the factor sin2_ o /sln2_ c.

The cone centered on the field line at the equator with half-angle

_c is called the "loss cone." Any particle whose velocity vector

at the equator lies within this cone will be lost to the atmosphere.

If we let Rmbe the geocentric distance to a mirror point, the lati-

tude of the mirror point_m can be calculated, assuming a dipole

field and using the equation for a field line.

Rm = R e L cos 2 A m (3.18)

Relation (3.3) can be used to relate_to A m. If we know the

altitude at which atmospheric loss becomes important, (3.18) and (3.3)

can be used to calculate-A, c as a function of L. Since the altitude

in question is of the order of hundreds of kilometers, for our pur-

poses we can approximate this as the earth's surface. The values of

_W--c calculated in this way are shown in Figure 9. As an example of

the sort of energy increase which can be expected before a particle

becomes lost in the atmosphere, consider a particle with an equatorial
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pitch angle of 30° at L = 2. From Figure 9 we see that_a_ c _5 °

so that energy is increased by a factor of sin2 30°/sin 2 5°_ 33.

In order to obtain someidea of the rate at which particles

can becomelost into the atmosphere, it is of interest to calculate

characteristic lifetimes. To do this we begin by considering the

diffusive and convective behavior of a system of noninteracting

particles undergoing scattering in velocity space by sometype of

scattering agents. In our case velocity space is just a one-dimen-

sional space defined by u-o , and the scattering agents are the
iJ

hydromagnetic waves. If we assume that there is no correlation be-

tween successive wave--particle encounters, then the random walk process

can be treated, using the Fokker-Planck equation which in this case

takes the form

where _ ( _-oil )dL_Oll is the number of particles with velocities

between and _ + d_ . The derivation and properties of
_1t °ll It

the Fokker-Planck equation are given in Appendix B. The assumption

of no correlation between successive encounters is probably not com-

pletely valid for WT m < I, but (3.19) should still give essentially

the correct results for sufficiently large values of the time t.

Let us now consider the solution of (3.19) for the case when

_VH)2_ and<Z_ _)are constants. If we choose an initial dis-((n

tribution which is a delta function at some initial position W-0 = UO'
II

in the absence of boundaries we obtain (see Appendix B)
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3.2o)

This is a gaussian distribution moving toward increasing _Oil, in-

stantaneously centered at _-o{ I= uo + <_>t with an instantaneous

half-width _ 2 <(_ _ 2|I) } t . From this we see that<_ _>is a

measure of the convective motion of the particles in velocity space

and _(_ _i) 2 > is a measure of the spread in the distribution, or

the diffusion.

In the case we are considering, particles with an initial

parallel component of velocity u can undergo an increase in velocity
o

up to some value of uc at which point the particles become lost from

the trapping region. This suggests defining a characteristic lifetime

of the form

This definition is not entirely satisfactory as it stands, however.

In the analysis above it was assumed that <_ U_and < (_ _i)2}

were constants. In the case we are considering, they are not constant

but depend on b- through Tm. The most obvious modification to
°l!

(3.21) is to replace <6 _i ) by its mean value between the two limits

of _T m corresponding to u-o = uo and 1/-o = Uc, i.e.,

l SoXC (3.22)

where we have let x =_T m. The definition of the characteristic

lifetime is now modified to read

u (3.23)

TL Uc - o

<A 7, >

Using (3.14) we can carry out the integration in (3.2e) to obtain



°

the distribution will be of the form

[ ] E(_o , t) = NO <(A_)2>t "½exp -(u- -U1)2/2 <(Z_TI) 2
t_ _ Olj

(3.29)

where NO is the total number of particles and u I is the mid-point

of the interval between u o and uc. Evidently, the half-width of the

gaussian distribution at the 1/e point at time t is-_2 < (_)2_ t

The ratio of the total width of the distribution to the interval be-

tween u o and u c is

A characteristic diffusion time

y _- 2 _2 < (_,)2>t (3.30)

Uc - U O

D can be defined as the time re-

quired for this ratio to assume some arbitrarily chosen value. When

this ratio is established, _D is obtained from (3.30) in the form

: _o2(_ - 1)2
_D uo

8 <.(A_,)22
(3.31)

where we have replaced

be written (Appendix C)

<(_ ,I,,)2>

<,(_ _)2> x°2

by its mean value which can

o(xo) - o(xc)

X0 - Xc

(3.32)

The function G(x) is defined as

o(x):£n (ix)- l - ci(x)÷ 2 si,_ 2(l-cosx)
x x2 (3.33)

where 2ny is the Euler's constant (= 0.57T...) and Ci(x) is the

Integral Cosine Function (Jahnke and Emde, 1945). Combining (3.32)

and (3.33) we finally obtain

- 45



a

wA

y2 tan_Lo

Z-LD=_ (-tan_ c
1)2(1- Xc ) xo2

2 %(0)

It should be noted that in arriving at relations (3.27) and

(3.3_), we have tacitly assumed that the expressions for _/ku_u_
I!

and _(Zi _)2 } / _2 as functions to Tm obtained from the model

are reasonable approximations to what would be obtained from the

actual magnetosphere. The behavior of the wave amplitude as a func-

tion of distance along a field line is somewhat unrealistic in the

model. The requirement that the ratio of the wave amplitude to the

unperturbed field strength be a constant implies an increasing ampli-

tude as we move down a field line, while a decreasing amplitude

probably would be more realistic. The field lines of the model do

not converge as rapidly as the lines of a dipole field. For this

reason the dependence of the bounce period on the parallel component

of particle velocity is not the same. However, the model does contain

the essential features of the converging field lines of the mirror

geometry found in the magnetosphere, with the mirror point set in

motion by a changing field strength in the mirror point region. For

this reason it is felt that (3.27) and (3.34) provide reasonable

estimates of the characteristic times involved in the process.

Both TA_ and _D depend in general on the particle energy,

pitch angle, L-value, and on the wave period and amplitude. As an

example which may be of some interest, calculated values of_L

versus particle energy for protons at L = 4 with an initial pitch

angle of 30° in the presence of disturbances of 10-gammas amplitude

at the initial mirror point are shown in Figure lO. Wave periods

from lO seconds to lO0 seconds are included. Similar calculations

for electrons are shown in Figure ll for wave periods of from 1 sec-
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ond to i0 seconds. Examples of characteristic diffusion times are

given in Figure 12 for protons at L = h, _o = 300, and for a wave

of lOO-second period and lO-gamma amplitude. Calculations have been

made, using as a criterion a spread in the distribution such that the

full width of the distribution is equal to uc - u o (Y = 1 in (3.31)).

The corresponding curve of_i_ is shown for comparison purposes. In

order to obtain some idea of how _--L varies with changing L-value,

calculations were made for protons at L = 8 and a wave period of 50

seconds with an amplitude of I0 galmnas at the initial mirror points.

These calculations along with the corresponding values at L = 4 are

sho_m in Figure 13.

The sample calculations indicate that for a given wave period,

the maximum disturbance occurs for particles in an energy band ap-

proximately two decades _lide. Examination of Figure i0 gives some

feeling for the dependence of the characteristic lifetimes on the

wave period. As we proceed toward shorter periods, the minimum in

the _ versus energy curve shifts toward higher energies and the
t-

magnitude of r_u decreases. In the example considered, for a

wave period of I00 seconds, the characteristic lifetimes are of the

order of 500 days in an energy band from 5 key to 500 key, while

for a wave period of iO seconds the characteristic lifetimes are

down to the order of 50 days, and the energy band in which the

maximum effect occurs has shifted up to an interval between 500 kev

and 50 Mev. The calculations for electrons shown in Figure Ii in-

dicate that in order to reach the energy range from tens of kilo-

volts to several Mev it is necessary to go to wave periods about an

order of magnitude smaller than in the case of protons.
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From the comparison of b D and __ shown in Figure 12,

we see that rL D is of the same order of magnitude as f#L . This

indicates a considerable spread in the distribution function can be

expected to occur in times of the order of _ . This effect is mani-
L

fested in a spreading out along the lines of force of the mirror

points of particles having the same initial pitch angle. Thus, short

diffusion times indicate that the distrlbut_on of particles at a

given time is not strongly dependent on the particle source mechan-

ism, since any structure in the distribution is rapidly smoothed out.

From Figure 13 we obtain some idea of the way in which _--L

changes with increasing L-value. The values of t_ L decrease by

about an order of magnitude in going from L = 4 to L = 8, which il-

lustrates the relatively greater stability against magnetic distur-

bances of the particles at lower L-values. The relatively short

characteristic lifetimes of the order of tens of days at L = 8 indi-

cate that if disturbances of periods of the order of tens of seconds

exist during a reasonable percentage of the time, they could play a

role in defining the outer limits of the proton distribution in the

magnetosphere. The shorter period disturbances would tend to affect

the high energy end of the proton distribution, softening the spec-

trum at higher L-values.

From (3.27) and (3.34) we see that the characteristic times

are inversely proportional to the square of the relative wave ampli-

tude. The calculations discussed above are all based on a lO-gamma

amplitude. A one-gamma amplitude would result in a characteristic

lifetime one hundred times longer than those given above.

Eo Summary

Estimates of characteristic lifetimes and characteristic dif-
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fusion times have been made using a model originally employed by

Parker (1961). In the original analysis the restriction _T m < I

was imposed. In the present analysis this restriction has been re-

moved, allowing an estimate to be made of the particle energy band

over which a wave of a given period produces a significant effect.

Sample calculations of characteristic lifetimes versus particle energy

indicate that the effects of a monochromatic wave are felt by par-

ticles in an energy band approy.imately two decades wide, with the

high energy end corresponding to the energy for which _Tm_l.

Characteristic diffusion times are found to be of the same

order as the characteristic lifetimes, indicating the importance of

the diffusive behavior of the particles. For a group of particles

initially having the same mirror point, an appreciable spread in mir-

ror points can be expected to develop as they execute a random walk

down the field line.

Calculations of proton characteristic lifetimes for L = _ and

L = 8 indicate that the energy band of particles affected by a dis-

turbance shifts toward higher energies with increasing L-value, while

the characteristic lifetimes decrease. If hydromagnetic disturbances

are present in sufficient abundance with periods of the order of

tens of seconds, they could play a role in the dynamics of the out-

er part of the region of trapped protons. The tendency of the shorter

period waves to affect the higher energy particles could produce a

steepening of the energy spectrum toward higher L-values.

Sample calculations of characteristic lifetimes for electrons

at L = 4 indicate that in order for electrons in the i0 key to several

Mev energy range to be affected, waves with periods from I0 seconds

down to one second would be necessary.
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CHAPTER IV

VIOLATION OF THE THIRD INVARIANT BY

LARGE-SCALE MAGNETIC DIS_/RBANCES

We shall now consider magnetic disturbances which can

violate the third or flux invariant of the particle motion.

Mechanisms capable of producing such a violation include magnetic

storm sudden commencements, sudden impulses, sinusoidal magnet-

ospheric boundary motion, convective systems within the magnet-

osphere, transverse waves with periods near the drift period,

localized long period disturbances, and long period compressional

waves not associated with boundary motion (such as those generated

by exospheric gravity waves (Patel, 1965)). In order for such

violations to occur, it is necessary for the disturbances to have

time scales comparable to the particle drift period. The principal

effect is to produce a diffusion of particles across magnetic

shells. We shall consider only disturbances of sufficiently large

scale to extend over the entire trajectory of the particle as it

drifts in longitude.

A. Models for Lar_e-Scale Magnetic Disturbances

The first attempt at a quantitative treatment of the

violation of the third invariant by magnetic disturbances was

made by Parker (1960), although Herlofson (1960) had previously

considered the diffusion of particles across magnetic shells with-

out considering specific models. In Parker's study the unperturbed
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field is assumedto be a dipole. A magnetic storm type of dis-

turbance, based on the Chapman-Ferraromodel, is simulated by

bringing a conducting plane oriented parallel to the dipole axis

up from infinity ina time very short comparedto the drift period

of the particles. The plane is then held in place for a time

comparable to the drift period or longer, and finally withdrawn

either abruptly or slowly. Only particles mirroring at the

equator are considered.

The physical picture of what happens to the particles

when such a disturbance occurs is easy to follow qualitatively.

Consider a ring of particles drifting in the equatorial plane of

the dipole field. The particles will drift along a contour of

constant field strength which will be a circle in the unperturbed

field. Whenthe conducting plane is brought up, the field will

tend to be compressed. If this is done very rapidly compared to

the particle drift period, the particle will remain essentially

on the samefield line and movewith the thermal plasma and the

field line. Viewed in another way, the plane must be brought up

so rapidly that the drift velocity __ due to the induced E-field

is muchgreater than the gradient drift velocity _ . Whenthe
--&

field is compressed, the ring of particles is suddenly displaced

in a direction away from the plane and is no longer centered on

the dipole. If the plane is then held in place for a time long

comparedto the drift period, each particle in the initial ring

will drift along a new contour of constant field strength. Since

the centers of the new contours of constant field strength are

shifted off the dipole in the direction of the conducting plane,

and the center of the initial ring is displaced in the opposite
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direction, the particles will no longer all drift along a common

contour. Each particle will move along a slightly different con-

tour. If the plane is now withdrawn slowly, the new contours will

become recentered on the dipole, and the particles which were

initially in a ring will now be spread out into a band. Particles

with the same initial L-value will be distributed over a range

of L-values.

In Parker's analysis the mean square change per disturbance

in the geocentric distance of the particles was calculated, and

their diffusive behavior was investigated, using an heuristically

derived diffusion equation. This analysis was later modified by

Davis and Chang (1962) who derived both the mean and mean square

changes in the radial distance and used the Fokker-Planck formu-

lation to treat the diffusion.

This model is probably reasonably well suited for the

treatment of magnetic storm sudden commencement type perturba-

tions, which was the original intent of both Parker and Davis and

Chang. It may also be applicable to the sudden impulse disturbances

which are observed both at satellite altitudes and on a world-

wide basis on the ground (Nishida, 1963; Nishida and Cahill, 1964).

Such an application is now being pursued by Hess and his col-

leagues (Hess, 1965).

In Parker's model the perturbed field can be calculated

when the plane has been moved in to a distance _ from the di-

pole by placing an image dipole of the same strength a distance

2 _ away. When this is done, the perturbed field is found to be

given approximately by (Parker, 1960)
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where M is the magnetic dipole moment and the coordinates R, e ,

and _ are the spherical polar coordinates defined in Figure 14.

Expressions (4.1) are valid only for values of R somewhat less

than_. The first terms in B_and B e are simply the contribu-

tions of the unperturbed dipole field and the remaining terms

represent the perturbation field. Using the sudden disturbance

model and (4.1), Davis and Chang were able to calculate the mean

and mean square displacement per disturbance of the radial dis-

tance of the particles by considering the displacement of the

field lines and assuming the particles remained on the field

lines during the displacement. Their results for the lowest non-

vanishing order in R/_ are

<AR =2

We see that both quantities increase rather rapidly with

increasing radial distance. Physically, this means that particles

moving inward will tend to diffuse more slowly, while the rate of

diffusion for particles moving outward will increase. As a distrib-

ution which is initially a delta function spreads out, particles near

the inner edge are depleted more slowly than those near the outer

edge. As a result, the distribution becomes distorted with a steep
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inner edge, giving the appearance of a wave with its crest

moving inward. The position of this crest is found by Davis and

Chang to be given approximately by

I_8 i_ 1-2

1 -i

where Rc is the position of the wave crest and _ is the number

of disturbances which have occurred. This is an asymptotic form

good for large _ . From (4.3) we find that the apparent inward

velocity of the crest is

dt

2

an
Rc

dt

where dn/dt is the number of disturbances occurring per unit time•

B. Calculation of <_R)2>"" for a Sinusoidal Disturbance

It is of interest to consider the possibility of perform-

ing an analysis similar to that discussed in the previous section

without requiring a sudden rise time, since such a non-linear

treatment requires a perturbation of a rather special shape. In

particular we would llke to be able to treat a disturbance with a

slnusoidal behavior. If we consider modifications of (_.i) such

that the perturbation field has a sinusoidal time dependence with

a frequency LO, the most obvious modification which is linear in

sin OJt is

B_ =_cosO +_ cos_9 + 2---_sin 2 _sin

M M 3R
B =--_sin_ +_o in_ +-- cos 2 _9 sin

_ 21

_3MR
16_ cos 0 cos _ sin_Ot
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We shall adopt this as our model. Violation of the third invar-

iant by sinusoidal boundary motion should be well represented

by this model, as should any large-scale compressional disturb-

ances propagating in the equatorial plane.

In order to calculate the mean square change in the

particle geocentric distance per disturbance cycle, it is neces-

sary to first consider the drift behavior of individual particles•

The drift velocity of a particle mirroring in the equatorial

plane is composed of the sum of two parts: the gradient drift

2
mcu" B x_i B

v- = -
--C_- 2eB B _

and the E x B drift due to the induced E-Field

tr ExB-- ,-.c (4.7)
--E B z

In the analysis of Parker and of Davis and Chang in which

< < _ during the initial part of the perturbation, A R

could be found by calculating the displacement of the field

lines on which the particles are trapped• In our case Lr and

O_£ may be of the same order throughout the perturbation, so

explicit expressions for tr and _£r are needed.
-gr £

In general, the calculation of the induced E-field is

rather difficult. However, in the model we are considering in

which the B-field is completely specified at each point at all
w

times, knowledge of an explicit expression for E is unnecessary.

The value of Lr will be the same for both the thermal plasma in
--E

the magnetosphere and the energetic particles, since (4.7) is

independent of particle parameters. However, the gradient drift

(4.6) is proportional to the particle energy, so the relatively
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low energy plasma will have drift periods of the order of years

(cf. Table III). Since we are considering time scales of the

order of tens of minutes, the plasma motion will be determined

by_[ . Since the field can be assumed to be frozen in the plasma,

the plasma motion in the equatorial plane and hence_LC[canbe de-

duced by following the motion of the points of intersection of

the field lines with the equatorial plane.

Theequations for a line of force can be obtained from

the defining relations

dR Rd@ R sin_
- d

-_ = B_ Be

Substitution of (_.5) into (4.8) with the retension of terms

4
throu6h order (R/_) gives

1 dR cos
-- 2--

R d

d_ _
dO

COS _) + R__ _ (l__sin 2 sin_t

sine 8_ s sin_ _ sin e

4 e cos sin (4.9)
16_ _ sln_

This is a set of coupled first order differential equations, for

which the solutions R(e;t) and _ (@ ;t) represent a llne of

force at some instant of time. These must be solved by successive

approximation. We do this by noting that in the absence of the

perturbation (_-_@_, equations (4.9) have the solution

2
R = ]- sin

(4.1o)

where _" and _ are constants of integration. These are Just

the equations of the unperturbed dipole field which intersects

the equatorial plane at R = 1- and = _ . Taking (4.10) as a
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first approximation and substituting these values into the

right-hand side of (4.9), the integration can be carried out to

give a second approximation. The result with _) set equal to

_/2 is

R = _" - _ - -_ sin sin _D

= ? + 112_ $ COS _ sin GOt

(_.i1)

This defines the intersection with the equatorial plane of a

field line at time t whose point of intersection in the absence

of the perturbation is R =_ , _ =_. We can use the parameters

and_ to "label" a particular field line and follow its motion

in the equatorial plane as a function of time, using (4.11).

Now the velocity of the point of intersection with the

equatorial plane of a field labeled F, _ at time t is obtained

by taking the time derivative of R and _ . The result is

R

dt 6 21 _ sin

d_ _T-_ --3_ cos _ cos _t

,j

cos a2 t (4._)

The velocity of the thermal plasma at the point (R, _ ) in the

equatorial plane at time t is just the velocity of the line

which is located at ( R, _ ) at time t. The label of the line

at (R, _ ) at time t is determined by inverting equations (4.11)

to obtain _and _gin the form
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The values of r and _ obtained in this way are substituted into

(4.12) to obtain the components of _- in the equatorial plane
--£

in the form

-E_ 21 _ sin cos

[[_ =¢OR 112%_ cos cos Wt

wt

%

a

It is helpful to attempt to picture the behavior of the

magnetic field at the equatorial plane as it is subjected to the

perturbation. Consider the set of field lines intersecting the

equatorial plane along the circle of radius V centered on the di-

pole at time t = O, as shown in Figure 15. The points of inter-

section of these lines will oscillate between the limits indicated

by the broken contours. (The amplitude of this motion is exag-

gerated in the drawing.) The trajectories of several of the in-

tersection points are shown. The lowest order change in the

contour is a shift of order _/_4 of the center of the circle

along the line joining the dipoles and a change in its radius

of order F 3/_3.

We must now calculate the drift velocity. It is conven-

ient to rewrite (_.6) in the form

c_ e B

where _ is a unit vector normal to the equatorial plane andj_
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is the first invariant, which we assume is conserved throughout

the perturbation. Using (_.5) and (4.15) we obtainS@which,

written in component form, is

3c_ 1

GR e R

3c_ i

tr _ = e R

cos sin 60 t

R3 R
i--- (1-2 sin

8_s Y

(4.16)

) sin m t_

J

The total drift velocity is obtained by adding (4.14) and (4.16),

giving the guiding center equations of the particle motion

t1dR = -OOR -

dt 21 _ sin _ ) cos

3_ (4.17)d_

dt = i12_ cos

I R3 R tl
+ 3c_ . 1 i -_(i-2_ sin _ ) sin Co

e R

We would like to obtain R(t). To do this we must resort to suc-

cessive approximation once again. In the absence of the perturba-

tion, the solution to (4.17) is

!

R : Ro _ (4.18)

J
where R o and _ o are constants of integration, and _'A is the

angular drift frequency

:/_ (4.19)

e%

Taking (4.18) as a first approximation and substituting into the
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right-hand side of (_.17), the equations of motion can be inte-

grated to give a second approximation. The result for R(t) is

R(t) = RO 1 -16--_ sin _t

sin(i_ + _ )t

+ + COS

2(6 + _ )

_cos(II- W)t-i

sin(fl - _))t

+ _ R4 li sin(_1 -_)t

l-cos (I'i-_ )t l-cos (/l+ _U)tll

(4.2o)
cos(_l+ Lu)t-I

The constant of integration has been chosen such that R = Ro

when t = O. Note that the higher order terms in (4.20) show the

characteristics of resonance behavior for IO =I_.

The change in R during one disturbance cycle can be calcu-

lated from (_.20) by letting t = 2C//_}. This gives

n -i) + 0- cos _.o (cos2"__- (_.21)

If we assume that all initial position angles _ of the particle
O

are equally probable, we can perform an average over _ . Squar-
0

ing (4.21) 8nd carrying out the averaging, we obtain

2 - 8 / _I_

This is the desired result for the mean square change in radial

6O
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position per disturbance cycle.

2

The dependence of Q (_R) > on the disturbance fre-

quency is shown in Figure 16. The resonance-like behavior is

due to the fact that the particles are subjected to a perturbation

throughout their entire trajectory. Maximum changes occur in R

when the drift period and the period of the perturbation are

approximately equal. When the perturbation period is an inte-

gral multiple of the drift period greater than or equal to two,

the effect of the perturbation is completely canceled out over

one period and nulls in _ (_ R)2_ are obtained. At large

values of the perturbation period, the third invariant is no

longer violated appreciably.

Comparing (4.22) with the result obtained from the sudden

disturbance model (4.2), we see that the sinusoidal model modi-

fies _(2_ R)2_ by a factor of twice the frequency dependent

function shown in Figure 16. Thus, for values of R where the

resonance effect is strongest (_-_0J) the value of _ (_ R)2_

for a sinusoidal disturbance can be about ten times as large as

that for a sudden disturbance of the same amplitude. For other

values of R, where the sinusoidal disturbance is off resonance,

2

the sinusoidal value of _ (/k R) _ can be much smaller. Thus,

for this mechanism to be most effective, it is necessary that

waves with periods within a few minutes of the particle drift

period be present a substantial fraction of the time. There is

some evidence that certain types of waves may propagate most fre-

quently near a particular period (Patel, 1965), but this is based

on a very small sampling of data. In order to ascertain if such

a condition occurs regularly in the magnetosphere, much more
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extensive studies will have to be carried out.

C. Calculation of Diffusion Times

We would no_ like to calculate characteristic diffusion

times from the expression for < (/kR) 2 > obtained in the pre-

vious section. To do this, we once again consider the solution

of the Fokker-Planck equation with constant diffusion coeffi-

cients (Appendix C). In this case we are considering a distri-

bution in a one-dimensional space defined by the radial distance

R. Consider a P-function distribution at time t = 0 at some

particular value of R. The half-width of the distribution (I

at time t is then given by

We can now define a diffusion time _ as the time required for

the distribution to spread to some arbitrary half-width _l"

This can be written

The diffusion time provides a characteristic time scale over

which the diffusion proceeds at a given radial distance, neg-

lecting the convective part of the motion.

The diffusion time defined by (_.24) will depend in

general on the radial distance and the magnetic moment of the

particles being considered. The dependence on magnetic moment

results from the assumption that the first invariant is conserved

during the diffusion process. The energy of the particles changes
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as they move from one shell to another, going as L-3 for non-

relativistic particles.

As an examplewe shall consider a particular case for

which the diffusive behavior of particles is of considerable inter-

est. An apparent radial diffusion of electrons with energies

greater than 1.6 Mevhas been observed in Explorer 14 by Frank,

Van Allen and Hills (1964) and by Frank (1965). Under post-

magnetic storm conditions, an apparent inward motion of a "wave"

of electrons was observed between L = 4.8 and L = 3.4. The

apparent inward velocity of the wave was-_0.4 RE/day at L = 4.8,

decreasing to NO.03 Rg/day at L = 3.4. To investigate the diffusive

behavior which the model we are considering would predict in this

region, characteristic diffusion times were calculated for elec-

trons which would have an energy of 1.6 Mev at L = 4. A value of

= ll.3 earth radii was used, which corresponds to a perturha-

tion of lO-gamma amplitude at L = 8 along the earth-sun line and

approximately 5 _ at L = 4. The results of the calculations

for disturbance periods of 5, i0 and 20minutes are shown in

Figure 17. The value of _ in (4.24) was taken as one earth

radius. For 1.6 Mev electron at L = 4, the drift period is 12.8

minutes. In the same figure the diffusion time obtained from the

2

value of <(2hR) _ which is obtained from the Davis and Chang

model is shown. In this model the diffusion time is proportional

to the quotientS8/ dn , where dnis the number of disturbances

dt dt

occurring per unit time. For purposes of comparison the same value

of%= ll.3 earth radii was chosen with one such impulse occur-

ring every ten minutes. This represents the minimum diffusion time

obtainable for a disturbance of this amplitude, applied to the
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particle under consideration. The same diffusion time is ob-

tained using any values of_ and --dn which give the same value
dt

8 dn

of_ /-_ • For exs_mple, forty-gamma disturbances occurring at

approximately 90-minute intervals would give the same diffusion

time as the ten-gamma disturbances occurring at ten-minute inter-

vals.

We see that for both models diffusion will proceed much

more rapidly at high L-values than at the more stable lower shells.

There is one range of L-values for which the diffusion times for

the sinusoidal model are approximately a factor of ten smaller than

the diffusion times of the sudden disturbance model. This range

of L-values is centered around the L-value at which the distur-

bance period is approximately equal to the drift period and reso-

nance occurs. In particular, disturbances with periods of from

ten to twenty minutes would appear to be most effective on the

electrons we are considering between L = 3.4 and L = 4.8. To

make an accurate estimate of the apparent rate of diffusion in this

region, it would be necessary to consider the convective part of the

particle motion also, which would require a knowledge of _/kR_.

However3 the increase in diffusion time by over an order of mag-

nitude between L --4.8 and L = 3.4 is in qualitative agreement

with the observed electron behavior. The amplitude of the dis-

turbamces required to produce the observed diffusion can be esti-

mated using (4.23). The value of _(/k R)2_ which is required

for _ = 0.4 R E and t = i day can be calculated and is found to

be 0.08 R _ /day. The amplitude necessary to produce this value

of _ (_ R)2_ for a disturbance period of ten minutes is 4.5

gamma at a radial distance of 4 RE on the earth-sun line. In a
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similar fashion it is found that an amplitude of 3 gamma at

4 RE is required for _ = 0.03 R g , when t = 1 day at L = 3.4.

Thus, it would appear that disturbances with periods of the order

of ten minutes and amplitudes of a few gamma are capable of pro-

ducing the observed diffusive behavior.

The diffusion times of the sinusoidal model increase as

we move from larger toward smaller L-values and approach infinity

at the L-value corresponding to the first minimum in the

2

< (_ R) > versus f)_/_ curve (Figure 16). Diffusion times

for L-values corresponding to points beyond this first minimum

are not shown in Figure 17.

D. Summary

The principal effect of the violation of the third invar-

iant is to produce diffusion of particles radially across magnetic

shells. A model applicable to disturbances with a rise time

rapid compared to the drift period of the particles under con-

sideration has been treated previously by Parker and by Davis and

Chang. In the present work we have considered a model represent-

ing a large-scale sinusoidal disturbance. Calculation of the mean

square change in the geocentric particle distance and the char-

acteristic diffusion time which can be obtained from this quan-

tity indicates the existence of a resonance behavior when the

period of the disturbance is approximately equal to the particle

drift period. This indicates that relatively small amplitude

sinusoidal disturbances can produce appreciable particle diffusion

over a small range of L-values where the resonance effect is

greatest.
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Calculations have been carried out for characteristic

diffusion times for 1.6 Mev electrons in the vicinity of L = _,

where an apparent diffusive behavior of electrons has been ob-

served. The results indicate that the diffusion times predicte_

by the sinusoldal model can be approximately ten times smaller

over a small range of L-values than those predicted by the sudden

disturbance model, using the same amplitude. An accurate cal-

culation of apparent drift velocities must include the convective

part of the particle motion, which requires a knowledge of the

mean change in the geocentric particle distance as well as the

mean square change. To calculate the mean change in radial dis-

tance to the first non-vanlshing order in R/_requires an ad-

ditional iteration of each calculation in the preceding section,

which leads to such a voluminous amount of algebra as to be no

longer tractable. However, the diffusion times calculated from

(/_ R) 2 _ appear to be of the right order of magnitude to

give diffusion rates comparable to those observed when a dis-

turbance amplitude of 5 gamma at L = 4 is assumed.
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CHAPT_ V

EXPERIMENTAL TESTS

We shall consider measurements which could be performed to

make an experimental study of the processes which have been discussed

theoretically in the previous chapters. Since controlled experimental

conditions do not exist in the m_gnetosphere, there will generally

be a"number of acceleration and loss mechanisms simultaneously opera-

tive. For this reason it is somewhat difficult to isolate the ef-

fects produced by one particular mechanism. However, it should be

possible to determine whether a given set of observations is consis-

tent with an assumed model for a particular mechanism.

In order to ascertain whether the mechanisms we are consider-

ing are operative, we need to choose observational conditions under

which the individual mechanisms can be separated out. The diffusion

process across L-values associated with the violation of the third

invariant will tend to be the most noticeable where a strong radial

dependence of the particle flux exists. However, a radial dependence

of a temporary nature, such as that associated with a magnetic storm,

must be chosen since any steep radial dependence of a permanent or

quasi-permanent nature such as the "slot" must imply conservation of

the third invariant in order to persist.

Measurements of radial distribution of the particle flux

should be made over a sufficiently long period of time to allow a

characteristic time scale to be established for any apparent diffusion

which may be present. The post-storm measurements of E > 1.6 Mev

electrons given by Frank et al. (1964) which were discussed in Chapter

IV provide a reasonable example of the type of measurement needed.

Simultaneous magnetic field measurements should be made from which
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a hydromagnetic wave frequency spectrum can be determined. The

calculations of Chapter IV can be used to ascertain whether the

observed wave amplitudes and particle diffusion rates are consistent

with the assumed model.

For the example of E > 1.6 Mev electrons in the region

B< L _ 5, the wave power spectrum of/k(_is required over a range

of periods between five minutes and twenty minutes. Any abrupt drop-

off in the power spectrum could result in a complete cessation in

the apparent particle diffusion at some minimum L-value, so cor-

relations of this type should also be attempted. The reason of

such a cessation of particle diffusion can be seen by referring to

Figure 17. The diffusion time associated with a given wave period

takes a rather abrupt increase as it approaches a minimum L-value.

For example, if the power spectrum dropped off sharply near some

minimum period, say Twave-_lO minutes, then the diffusion could be

expected to stop at L N 2.8. An effort should be made to ascertain

whether waves near one particular period persist over a sufficient

period of time for the sinusoidal mechanism to be effective.

When the second invariant is violated, it is likely that the

third invariant also will be violated at the same time. Therefore,

the chances for observing the effects of violation of the second

invariant would seem to be best under conditions where the radial

dependence of the flux is not too great. The violation of the

second invariant by the mechanism we are considering produces a ran-

dom walk of particle mirror points down the field line, but no mo-

tion across field lines can occur. Correlated changes in energy and

pitch angle are produced, and a depletion of the total number of

particles trapped in the region can be expected. Correlated measure-
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ments of both the field and particles are required. Characteristic

life times can be estimated using the calculations of Chapter III,

if the hydromagnetic wave spectrum is known and these times can be

compared with the observed time scale of depletion. It will be nec-

essary to obtain some information on the particle energy spectrum in

order to carry out this test. An instrument which detects only all

particles above a given energy threshold might show an increased count-

ing rate, even though the number of trapped particles is decreasing

due to particles with energies Just below the threshold being accelera-

ted above the threshold before they are lost from the trapped region.

This could be troublesome when the energy spectrum is steep.

The range of periods over which the hydromagnetic wave fre-

quency spectrum is required depends on the energy range of the parti-

cles being investigated. For example, to study the effectiveness of

the mechanism on electrons with energies of tens of kilovolts, an

accurate wave frequency spectrum In the range of wave periods between

one and lO seconds would be required at LN4. The same wave measure-

ments would also be applicable to the study of protons with energies

from one to several tens of Mev at the same L-value. In order to

correlate wave activity with the behavior of protons with energies

of the order of hundreds of kilovolts, the wave spectrum between lO

seconds and 60 seconds is required. In particular, the spectrum of

_, the difference between the field strength and its ambient value

is the quantity desired. Since the characteristic lifetime is inverse-

ly proportional to the square of Z_6, it is necessary to be able to

deduce this quantity to within a few gammas.

An additional check on the mechanism can be made by comparing

the pitch angle distribution before and after a period of magnetic dis-

turbances. The concentration at higher pitch angles should be reduced

due to migration of particle mirror points down the field lines.
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CP.APTERVI

SUMMARYANDDISCUSSION

A. Summary

In this study we have considered two possible mechanisms by

which the geomagnetically trapped energetic particles can interact

with hydromagnetic perturbations. These include violation of the

longitudinal Invariant by small-amplitude hydromagnetfc waves and vio-

lation of the flux invariant by large scale magnetic disturbances.

These mechanisms were chosen because it would appear that they must

be operative, at least to some extent, whenever magnetic perturba-

tions are present in the magnetosphere.

Preliminary to the main study, the three fundamental periods

of the trapped particle motion were discussed 3 and values for these

periods were calculated for a wide energy range for both electrons

and protons for a number of L-values. These periods are presented

in both tabular and graphical form and are used to make an estimate

of the range of hydromagnetic wave periods required to violate the

three invariants.

Violation of the second invariant by small-amplltude waves

was investigated, using a model originally employed by Parker. In

the original analysis a restriction that the ratio of the bounce

period to the wave period be less than one was imposed. In the

present work this restriction has been removed, making it possible

to estimate characteristic lifetimes as a function of particle energy.

Sample calculations of characteristic lifetimes and diffusion times

were made for several examples which have practical applications to

problems in the magnetosphere. These calculations indicate that

7O



waves with periods in the lO-sec to 60-sec range can provide an

important loss mechanismfor protons in the energy range of I00 key

to several Mev for L-_h and greater. For L < _ the proton life-

times limited by charge exchange and Coulomb scattering as calculated

by Liemohn (1961) appear to be shorter than those limited by hydro-

magnetic waves unless very large wave amplitudes are assumed. Simi-

lar calculations for electrons indicate that magnetic disturbances

with periods from i0 seconds down to one second or less can provide

an effective loss mechanism for particles in an energy range from

tens of key to several Mev. The characteristic lifetimes for both

electrons and protons decrease rapidly with increasing L-value,

indicating lower stability in the outer parts of the magnetosphere.

The problem of the violation of the third invariant by

small amplitude long-period disturbances was pursued by reviewing

work previously done by Parker and by Davis and Chang. In this

work, which was intended to treat particle perturbations produced

by magnetic storms, a model was used in which a conducting plane

was brought up abruptly from infinity to a magnetic dipole and held

in place for a time long in comparison to the particle drift periods.

This model would seem to be adequate for the treatment of storm-type

disturbances and perhaps for sudden impulses. However, it is desir-

able to be able to treat sinusoidal waves for purposes of comparison

with the power spectra of magnetic disturbances and to investigate

the possibility of resonance effects. Accordingly, in the present

work a model was used in which a dipole field is perturbed by an

image dipole whose moment has a sinusoidal time dependence. In

order to use such a model, it is necessary to calculate the EXB

drift velocity produced by the induced electric field. This was



done by following the motion of the thermal plasma which moveswith

the lines of force. In this way it was possible to obtain the drift

behavior of individual particles and to finally obtain the mean

square change in the particle radial distance per disturbance

< (_ R)2 > by considering an ensemble of particles. The depend-

ence of < (/kR)2> on waveperiod shows a pronounced resonance

behavior whenthe wave period approaches the particle drift period.

Using the meansquare change in geocentric particle distance,

the characteristic times for diffusion of particles across L-values

could be estimated. As an example, diffusion times for electrons

which would have an energy of 1.6 Mevat L = 4 were calculated, as-

suming a disturbance amplitude of _'-5

of four earth radii on the earth-sun line.

five minutes to 20 minutes were considered.

at a geocentric distance

Disturbance periods from

For purposes of compari-

son, diffusion times were calculated, using the sudden-disturbance

model with a similar disturbance amplitude. It was assumedthat

one such disturbance occurred every ten minutes, which is an unreal-

istically large numberbut serves to define the smallest possible

diffusion times which could be obtained with this model. It was

found that for L-values near which the resonance condition was sat-

isfied (disturbance period approximately equal to the particle

drift period), diffusion times calculated from the sinusoidal model

were as muchas a factor of ten smaller than those calculated from

the suddenmodel, indicating sinusoidal disturbances can be more

efficient in producing diffusion for particles of a given energy

over a limited range of L-values• The sinusoidal diffusion times

were found to increase abruptly as a minimumL-value is approached_

indicating that an abrupt decrease in particle diffusion would be

expected at such a point.
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Finally, measurements were proposed which could be used to

study the two mechanisms experimentally. The lack of controlled

experimental conditions in the magnetssphere makes it difficult to

separate out individual mechanisms which may be operative at a

given time. Since violation of the third invariant produces radial

diffusion, the effect will be most pronounced where a steep radial

dependence of the particle distribution exists. Therefore, strong

temporary radial flux dependencies such as those observed for E } 1.6

Mev electrons under post-magnetic storm conditions seem to provide

the best circumstances under which to observe violation of the third

invariant. In order for the sinusoldal model to operate at maximum

effectiveness, it is necessary that a siguificant number of waves

be present with periods within a few minutes of the particle drift

periods during the time of magnetically disturbed conditions. This

should be checked by making determinations of the frequency spectra

of /kB throughout the time when disturbed conditions exist.

Violation of the second invariant should best be observed

where the radial distribution of the particle flun: is slight in

order to minimize the effects of third invariant violation. Efforts

should be made to observe particle depletion in such regions during

magnetically disturbed conditions and to compare the observed

characteristic decay times with the characteristic times calculated

in Chapter III. It should also be possible to detect a change in

pitch angle distribution during a disturbed period if the mechanism

is operative, due to migration of particle mirror points down the

lines of force. The energy ranges in which particle measurements

would be required, along with the appropriate ranges of wave periods

over which wave spectra are needed, are given in Chapter V.
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B. Limitations of the Study and Suggestions for Further

Investigation

The principal limitations of the study of the violation of

the second invariant by hydromagnetic waves lie in the model used.

As has been pointed out, the wave amplitude of the model increases

down the field line, while a decreasing amplitude would probably

be more realistic. This would tend to cause the characteristic

times to be underestimated somewhat, especially for particles with

large initial pitch angles, since the effectiveness of the mechanism

would be overestimated toward the lower part of the field line. A

second disadvantage of the model is that the field lines converge

less rapidly than the field lines in a dipole field. This results

in the dependence of the bounce period of the particle on the

parallel coF.ponent of velocity being somewhat different in the two

cases.

Any attempt to correct either of the difficulties mentioned

above appears to result in a model for which the individual particle

motion is too complicated to be treated analytically, so it would

become necesssmy to resort to lengthy numerical analysis. The model

used in this work appears adequate to serve as a guide line in es-

timatlng the effectiveness of the mechanism and in planning an

experimental study of the mechanism, and it can be used for making

rough correlations of field and particle data. However, when more

complete data become available, it may be of interest to attempt

similar studies with more sophisticated models.

In the treatment of violation of the third invariant, only

particles mirroring in the equatorial plane (90 ° pitch angle) were

considered. The inclusion of particles with pitch angles less than
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90 ° greatly complicates the problem and would not appear to lead to

physical results appreciably different from those obtained with the

simpler model. Comparison of the amplitudes of large-scale magnetic

disturbances at satellite altitudes with the amplitudes at ground

level indicates that the accurate representation of such disturbances

may require models more complicated than an image dipole (Cahill and

Nishida, 1964). However, the dipole model should suffice to treat

particle diffusion over a limited range of L-values when the ampli-

tude of the magnetic disturbance is specified in the region of

diffusion. In order to provide a complete statistical description of

the particle motion, using the Fokker-Planck formulation, the mean

change in geocentric particle distance is required in addition to

the mean square change. The treatment of sinusoidal disturbances

provided in this work, along with the treatment of sudden disturbances

given by Davis and Chang should be adequate to serve as guide lines

for experimental studies and to provide a means for attempting a

rough correlation between magnetic field and particle data. As in

the case of the violation of the longitudinal invariant, more

sophisticated treatments of the problem may be warranted as more com-

plete data become available.
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APPENDIX A

EVALUATION OF<A _,> AND<(2_I_

In order to calaulate the velocity of the particle

on its return to the origin, the time required for the particle

to return must be obtained by finding the roots of (3.9) with

s set equal to zero, i.e.,

t a -5)- -, oo 5+o o =o
L"-o i I +

4_ 2acO

If the unperturbed case is considered (6= 0), it is obvious

from (A.I) that the time required for the particle to return

to S = 0 is 4_oi/__- which we shall call Tm. In terms of Tm,

(A.1) can be rewritten

(_ - (CJfm) _t) - 2g inuat cosS- cos_t sinE- z_t cos_

+ sin _] = 0

(A.I_

(A.2)

Assuming _t can be expanded in the form of

cot ao+ O I _ +O/Z _Z= @- (A.3)

(A.2) can be written

-sin_ cos(_o-,cos _ + sinS_ + _20-o0, 2

-_,_o_o_-__16 _ + . . . 0
"I

(A.4)

8o



I
where terms through order _ have been retained. Since this

relation must hold for arbitrary E, the coefficient of each

power of _ must vanish 3 giving the set of equations

ao( 4°-_T m) = o

_.,(2%-_%) =2(coso9si__- sinS cosao

%(2ao-_,%) ÷_.,z=e(_,cosS cosao. % sinJsin %
a_cosS )

¢

(A.5)

Discarding the trivial solution _= O, the set of equations
o

(A.5) can be solved for a o, _e' and%, giving

_ e= _OTm

a.,- 2 (cos_sin_Tm -

-_ cos2 + sin 5>
m

&_ I (2_cos_TmCOS
z m% '

-2_,cosS -a,_)

sln_Ccos ,,oT m

+ 2 a sinc,,mm sin
!

This determines the time required for the particle to return to

the origin through order _ The calculation could be carried

to higher order in _-_ if desired, but this is not necessary for

our purpose.

The time calculated above is now substituted into (3.8)

to obtain the change in the parallel component of velocity

compared to its initial value. After simplification and re-

arrangement, this becomes

A_ = 2 _ _ cos
% _% L'-

(-t_m cos _ - sin_% sinJ'

(A.6)

(A.7)
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,cos_% sin$] ÷ e( 63) (A.7)

The square of the change in velocity is simply

F14 _-cos_Tm cos5
Li

+ eCE, "_)
(A.8)

Substitution of (A.7) into the definition of the mean

velocity change (3.12) gives

l 2 &_

-ZIT (A.9)

c°s_Tm I

since only terms in sin _jand cos z 5 contribute. Evaluation

of the integrals and rearrangement of the terms result in

equation (3.14). In a similar fashion substitution of (A.8)

into the definition of the mean square velocity results in

equation (3.15).
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APPENDIX B

THE FOKKER-PLANCK EQUATION

.

The Fokker-Planck equation has been discussed extensively by

Chandrasekhar (1943), and we shall follow his presentation here. For

convenience let us consider a distribution of particles in a velocity

space having only one dimension. Let _(u,t) du be the number of

particles with velocities between u and u + du at time t. Then if

P (u;Au) is the classical probability that a particle of velocity

u will suffer an increase in velocity Zku time /kt we would expect

t_ (u, t+At) to be given by

(U, t+_t) -- __PCu-_u; /ku) _(u-Au, t) d(Au)

(B.1)

-- /P(%;ZXu) _(u,t) dC/ku)

-@o

assuming there is no correlation between successive changes in velocity.

Now, if small changes in the velocity are most probable, then

we can expand the functions in (B.I) in Taylor series, giving

_/(u, t+/_t )

P(u-_u; nu)

_(u-nu,t)

= _(u,t) + -_- At @ • •

- p(u;au) - _--P_u+ l_2p(_u) 2 +
_U _ _'"

= _(u,t) - _ _u + lO2PCau) 2 + ...
_u 2_ u 2

(B.2)

Substitution of (B.2) into (B.I) gives, after some algebra,

""-'_(u,t) + a_ Zlt =
at F_(u, t) (u; _u) d(2h u)

.__a%u I_P_; A u) Zlud(Zl u)1_ (B.3)

2 _u 2 [, u;nu) (_u) 2 d(_u

83



Assuming the classical transition probability is normalized to unity

and making the following definitions,

u;_u) bud (_u)--___--<Au> - /it

(u;z u) 2 d( u) ---- <(/iu)2> ._t

we obtain

eb

which is the Fokker-Planck equation for our one-dimensional velocity

space.

We see that (B.5) has the form of a diffusion equation with a

term involving the first derivative of _ added on. To obtain some

idea of the physical significance of (B.5), consider the case when

((_u)2>and <Au > are constants. A particular solution of

(B.5) is then

(u,t) = N %/ < (Zku)2_ t exp

as may be verified by substitution into (B.5). This is the distribu-

tion function at time t for a system of N particles initially having

a delta function distribution located at u = uo-

The solution (B.6) is Gaussian in form, with an instantaneous

"half-width" of F2 _(Au)2> t_ _ and instantaneous
center of

gravity located at uO + (Lhu > t. Thus, as time increases, the dis-

tribution spreads out as its center of gravity moves toward increasing

u (assuming<z_u > is a positive quantity). When <zku > is zero

(B.5) reduces to the ordinary diffusion equation and (B.6) becomes a

Gaussianwith a fixed center of gravity undergoing a spread with

8_



increasing time, with _ (__ku)2 > being a measure of the rate at

which the spread occurs. Evidently then, the effect of the term

involving <du > in (B.5) is to produce a convective motion of

the particle distribution in velocity space, with (_u > being

a measure of the rate of this motion.

The form of the Fokker-Planck equation used in Chapter III

is essentially the same as (B.5) with u replaced by _FolI . In

Chapter IV we are interested in the particle distribution in a one-

dimensional space with the particle radial distance as the coordinate.

However, the derivation of the appropriate Fokker-Planck equation is

the same, essentially, as that outlined above.

t
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APPENDIX C

@

G

c_mz_oN OF _E FUnCTIOnS;(x)_D G(x)

The calculations which lead to the functions F(x) and G(x)

appearing in (3.24) and (3.32), respectively, are lengthy but

straight forward. Details of these calculations are presented here.

To obtain the average value of <Zk u"ll> over a speci-

fied range of x---__)Tm, the integral which must be evaluated is

j_x x¢ 2'_" _2" I_Xc
sin x dx

Xc

+# (l-3cos x) _/x= sin x
jx _ _ + d_ (c.1)Jx o x3

_ _f(l-cos x)xq

The second integral on the right-hand side can be integrated by

parts, giving

(i-3 cos xo)
12 =' x

O XC JX X "
O

(c.2)

The third integral on the right-hand side of (C.l) can be inte-

grated by parts twice in succession to give

13 _ sin2ox° _ sin2x2xc + cos xo _ cos xc ---l-fX6sin__x dx _sj[_.=_
_o 2 x 2 x 2 /x x

C 0 C "/--o

The fourth integral on the right-hand side of (C.I) can be inte-

grated by parts, yielding

(i-cosx )

I_ = 3X_o (l-_i°s xr)
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However, the remaining integral in (C._) is Just 13 which has

already been evaluated above. The only integrals now remaining

are of the form

_Xoxc si____x_= si(xc). Si(xo)
X (c.5)

where Si(x) is the Sine Integral tabulated by Jahnke and Emde (1945).

Substituting (C.5), (C.4), (C.3), and (C.2) into (C.I),

we obtain

<n Z> dx - _m F(Xc)" F(X° (c.6)

where

(c.7)

_____ _(1-cosx)_
F(x) i Si(x)- (3-5cosx) .4 sinx +

3 x x2 x3

By expressing the individual terms in their power series expan-

sions, we find

F(x) > _ x3 (c.8)x---cO

while the asymptotic form of the function is

_7 (1-cosx)
F(x) >-- - (c.9)

x-._ _:_ 3 x

The integral which must he evaluated in calculating the

average of <(_ _a)_over a specified range of x is

X c _L _-7" LrO tI_LI<Xc dx:WN
Xc (_io)
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The first integral on the right-hand side can be reduced to the form

' _ _ +fXc cos x dx (C.ll)II = Xc " x° x
xo

The second integral on the rlght-hand side of (C.lO) can be

integrated by parts to give

t sin x0 sin x f Xc
I A = -_ c + cos x dx (C.12)

Xo Xc _/Xo x

The third integral on the right-hand side of (C.IO) can also be

integrated by parts to give

, 1 1 cos xc cos xo +--i/xc
I - - _ 2x 2 2 Jx x2

_ _-/+ - sinx _ (c.13)
c o o

J

The remaining integral in (C.13) is Just IX which has already

b_en evaluated. Thus, we have reduced the integrals to expres-

sions containing integrals of the form

XO cosx _ = ci(xc)_ ci(x) (c.141x

where Ci(x) is the Cosine Integral tabulated by Jahnke and Emde

(1945) and defined as

/:Ci(x)- °A _ _ (c.15)

Combining (C.14), (C.13), (C.12), and (C.11), we can write

xc<(,,_, > _ -_Tm _°" xc)-G(x (c.16)

where G(x) is defined as

G(x)-------_(_x) - 1 - Ci(x) + 2 sin x 2(l-cos x) (C.17)

x x

The quantity A_= 0.577 .... is Euler's constant. Using the

power series expansion and asymptotic form for Ci(x) given by

Jahnke and Erode, we obtain

x4 (C.18)
G(x) x--->o 288

with the asymptotic form of G(x) being given by
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FIGURE CAPTIONS

Fi_el.

Fi_e2.

Figure3.

Figure4.

Figure 5.

The guiding center geometry. A charged particle

located at position r with instantaneous velocity

and Larmor radius_ has its guiding center

located at R.

Proton bounce periods. Curves of constant bounce

period are shown on a plot of proton energy versus

L-value. Rough estimates can be made of the time

scale of the perturbations necessary to violate

the second invariant of protons of a given energy

at a particular L-value.

Electron bounce periods. Curves of constant bounce

period are shown on a plot of electron energy versus

L-value. Rough estimates can be made of the time

scale of the perturbation necessary to violate the

second invariant of electrons of a given energy

at a particular L-value.

Proton drift periods. Curves of constant drift per-

iod are shown on a plot of proton energy versus

L-value. Rough estimates can be made of the time

scale of the perturbation necessary to violate the

third invariant of protons of a given energy at a

particular L-value.

First order Fermi acceleration. The magnetic field

strength B as a function of distance along a field

line s is shown schematically. Particles initially

mirroring at a field strength Bmirror will be reflected

from the wave as it moves down the field llne and will

undergo first order Fermi acceleration as a result.
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Figure 6.

FigureT.

FigureS.

Figure 9.

Fi_elO.

Fi_ell.

Fi_el2.

Latitude of mirror point versus equatorial pitch

angle. The calculations shown are for an earth-

centered dipole field.

Mean change in the parallel velocity component versus

_T m. The broken line indicates the approximation

originally given by Parker.

Mean square change in the parallel velocity com-

ponent versus _T m. The broken line indicates the

approximation originally given by Parker•

The minimum equatorial pitch angle which a particle

can assume (loss cone) versus equatorial distance

to field llne. The calculations shown are for an

earth-centered dipole field with particle loss at

the surface of the earth.

Proton characteristic lifetimes. The calculations

shown are for an L-value of four, an initial equa-

torial pitch angle of 30°, and a wave amplitude of

lO _ at the mirror point. The curves are labeled

according to the wave period assumed.

Electron characteristic lifetimes. The parameters

used are the same as those used for protons in

Figure lO, with the exception of the range of wave

periods assumed.

Comparison of the characteristic lifetimes and char-

acteristic diffusion times for protons. The calcu-

lations are for an L-value of four, initial pitch

_f
angle of 30°, and a wave amplitude at the mirror

point of lO_.
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Figure 13.

Figure i_.

Figure 15.

Figure 16.

Figure 17.

Comparison of proton characteristic lifetimes for

two different L-values. A wave period of 50 sec,

wave amplitude of lO _ at the mirror point, and an

initial equatorial pitch angle of 30° were assumed.

The sudden disturbance model. A dipole field is

perturbed by bringing a conducting plane up from

infinity to a distance _. The resulting perturba-

tion field can be obtained by using an image dipole

at a distance 2 _. The coordinate system used in

the calculations is indicated.

Displacement of magnetic field lines in the sinu-

soidal model. The broken lines show the excursions

of the field lines (greatly exaggerated) which inter-

sect the equatorial plane along the solid circle when

the perturbation is absent•

Mean square radial position of particles versus wave

period. Resonance behavior is apparent in the region

where the wave period and the drift period are

comparable.

Electron diffusion times for a magnetic moment cor-

responding to an energy of 1.6 Mev at L = _. The

curves are labeled according to the wave period as-

sumed in each case. The curve for the sudden dis-

turbance model is shown for comparison.
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